login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175185 Pisano period length of the 6-Fibonacci numbers A005668. 11
1, 2, 2, 4, 20, 2, 16, 8, 6, 20, 24, 4, 6, 16, 20, 16, 36, 6, 8, 20, 16, 24, 48, 8, 100, 6, 18, 16, 60, 20, 30, 32, 24, 36, 80, 12, 12, 8, 6, 40, 40, 16, 42, 24, 60, 48, 96, 16, 112, 100, 36, 12, 26, 18, 120, 16, 8, 60, 40, 20, 124, 30, 48, 64, 60, 24, 22, 36, 48, 80, 70, 24, 148 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Period length of the sequence defined by reading A005668 modulo n.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

S. Falcon and A. Plaza, k-Fibonacci sequences modulo m, Chaos, Solit. Fractals 41 (2009), 497-504.

Eric Weisstein's World of Mathematics, Pisano period.

Wikipedia, Pisano period.

MAPLE

F := proc(k, n) option remember; if n <= 1 then n; else k*procname(k, n-1)+procname(k, n-2) ; end if; end proc:

Pper := proc(k, m) local cha, zer, n, fmodm ; cha := [] ; zer := [] ; for n from 0 do fmodm := F(k, n) mod m ; cha := [op(cha), fmodm] ; if fmodm = 0 then zer := [op(zer), n] ; end if; if nops(zer) = 5 then break; end if; end do ; if [op(1..zer[2], cha) ] = [ op(zer[2]+1..zer[3], cha) ] and [op(1..zer[2], cha)] = [ op(zer[3]+1..zer[4], cha) ] and [op(1..zer[2], cha)] = [ op(zer[4]+1..zer[5], cha) ] then return zer[2] ; elif [op(1..zer[3], cha) ] = [ op(zer[3]+1..zer[5], cha) ] then return zer[3] ; else return zer[5] ; end if; end proc:

k := 6 ; seq( Pper(k, m), m=1..80) ;

MATHEMATICA

Table[s = t = Mod[{0, 1}, n]; cnt = 1; While[tmp = Mod[6*t[[2]] + t[[1]], n]; t[[1]] = t[[2]]; t[[2]] = tmp; s!= t, cnt++]; cnt, {n, 100}] (* Vincenzo Librandi, Dec 20 2012, after T. D. Noe *)

CROSSREFS

Cf. A001175, A175181, A175182, A175183, A175184.

Sequence in context: A052628 A006853 A120417 * A257610 A062267 A128501

Adjacent sequences:  A175182 A175183 A175184 * A175186 A175187 A175188

KEYWORD

nonn,easy

AUTHOR

R. J. Mathar, Mar 01 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 08:43 EDT 2019. Contains 327189 sequences. (Running on oeis4.)