login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175183 Pisano period length of the 4-Fibonacci numbers A001076. 6
1, 2, 8, 2, 20, 8, 16, 4, 8, 20, 10, 8, 28, 16, 40, 8, 12, 8, 6, 20, 16, 10, 16, 8, 100, 28, 24, 16, 14, 40, 10, 16, 40, 12, 80, 8, 76, 6, 56, 20, 40, 16, 88, 10, 40, 16, 32, 8, 112, 100, 24, 28, 36, 24, 20, 16, 24, 14, 58, 40, 20, 10, 16, 32, 140, 40, 136, 12, 16, 80, 70, 8, 148, 76 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Period length of the sequence defined by reading A001076 modulo n.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

S. Falcon and A. Plaza, k-Fibonacci sequences modulo m, Chaos, Solit. Fractals 41 (2009), 497-504.

Eric Weisstein's World of Mathematics, Pisano period.

Wikipedia, Pisano period.

MAPLE

F := proc(k, n) option remember; if n <= 1 then n; else k*procname(k, n-1)+procname(k, n-2) ; end if; end proc:

Pper := proc(k, m) local cha, zer, n, fmodm ; cha := [] ; zer := [] ; for n from 0 do fmodm := F(k, n) mod m ; cha := [op(cha), fmodm] ; if fmodm = 0 then zer := [op(zer), n] ; end if; if nops(zer) = 5 then break; end if; end do ; if [op(1..zer[2], cha) ] = [ op(zer[2]+1..zer[3], cha) ] and [op(1..zer[2], cha)] = [ op(zer[3]+1..zer[4], cha) ] and [op(1..zer[2], cha)] = [ op(zer[4]+1..zer[5], cha) ] then return zer[2] ; elif [op(1..zer[3], cha) ] = [ op(zer[3]+1..zer[5], cha) ] then return zer[3] ; else return zer[5] ; end if; end proc:

k := 4 ; seq( Pper(k, m), m=1..80) ;

MATHEMATICA

Table[s = t = Mod[{0, 1}, n]; cnt=1; While[tmp = Mod[4*t[[2]] + t[[1]], n]; t[[1]] = t[[2]]; t[[2]] = tmp; s!= t, cnt++]; cnt, {n, 100}] (* Vincenzo Librandi, Dec 20 2012, after T. D. Noe *)

CROSSREFS

Cf. A001076, A001175, A175181, A175182, A175183, A175184, A175185.

Sequence in context: A341741 A074723 A286455 * A189217 A183037 A063077

Adjacent sequences: A175180 A175181 A175182 * A175184 A175185 A175186

KEYWORD

nonn,easy

AUTHOR

R. J. Mathar, Mar 01 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 01:39 EST 2022. Contains 358711 sequences. (Running on oeis4.)