login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175183 Pisano period length of the 4-Fibonacci numbers A001076. 2
1, 2, 8, 2, 20, 8, 16, 4, 8, 20, 10, 8, 28, 16, 40, 8, 12, 8, 6, 20, 16, 10, 16, 8, 100, 28, 24, 16, 14, 40, 10, 16, 40, 12, 80, 8, 76, 6, 56, 20, 40, 16, 88, 10, 40, 16, 32, 8, 112, 100, 24, 28, 36, 24, 20, 16, 24, 14, 58, 40, 20, 10, 16, 32, 140, 40, 136, 12, 16, 80, 70, 8, 148, 76 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Period length of the sequence defined by reading A001076 modulo n.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

S. Falcon, A. Plaza, k-Fibonacci sequences modulo m, Chaos, Solit. Fractals 41 (2009) 497-504.

MAPLE

F := proc(k, n) option remember; if n <= 1 then n; else k*procname(k, n-1)+procname(k, n-2) ; end if; end proc:

Pper := proc(k, m) local cha, zer, n, fmodm ; cha := [] ; zer := [] ; for n from 0 do fmodm := F(k, n) mod m ; cha := [op(cha), fmodm] ; if fmodm = 0 then zer := [op(zer), n] ; end if; if nops(zer) = 5 then break; end if; end do ; if [op(1..zer[2], cha) ] = [ op(zer[2]+1..zer[3], cha) ] and [op(1..zer[2], cha)] = [ op(zer[3]+1..zer[4], cha) ] and [op(1..zer[2], cha)] = [ op(zer[4]+1..zer[5], cha) ] then return zer[2] ; elif [op(1..zer[3], cha) ] = [ op(zer[3]+1..zer[5], cha) ] then return zer[3] ; else return zer[5] ; end if; end proc:

k := 4 ; seq( Pper(k, m), m=1..80) ;

MATHEMATICA

Table[s = t = Mod[{0, 1}, n]; cnt=1; While[tmp = Mod[4*t[[2]] + t[[1]], n]; t[[1]] = t[[2]]; t[[2]] = tmp; s!= t, cnt++]; cnt, {n, 100}] (* Vincenzo Librandi, Dec 20 2012 - after T. D. Noe *)

CROSSREFS

Cf. A001175, A175181 - A175185.

Sequence in context: A098471 A074723 A286455 * A189217 A183037 A063077

Adjacent sequences:  A175180 A175181 A175182 * A175184 A175185 A175186

KEYWORD

nonn,easy

AUTHOR

R. J. Mathar, Mar 01 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 25 00:41 EDT 2017. Contains 288708 sequences.