|
|
A175183
|
|
Pisano period length of the 4-Fibonacci numbers A001076.
|
|
6
|
|
|
1, 2, 8, 2, 20, 8, 16, 4, 8, 20, 10, 8, 28, 16, 40, 8, 12, 8, 6, 20, 16, 10, 16, 8, 100, 28, 24, 16, 14, 40, 10, 16, 40, 12, 80, 8, 76, 6, 56, 20, 40, 16, 88, 10, 40, 16, 32, 8, 112, 100, 24, 28, 36, 24, 20, 16, 24, 14, 58, 40, 20, 10, 16, 32, 140, 40, 136, 12, 16, 80, 70, 8, 148, 76
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Period length of the sequence defined by reading A001076 modulo n.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
S. Falcon and A. Plaza, k-Fibonacci sequences modulo m, Chaos, Solit. Fractals 41 (2009), 497-504.
Eric Weisstein's World of Mathematics, Pisano period.
Wikipedia, Pisano period.
|
|
MAPLE
|
F := proc(k, n) option remember; if n <= 1 then n; else k*procname(k, n-1)+procname(k, n-2) ; end if; end proc:
Pper := proc(k, m) local cha, zer, n, fmodm ; cha := [] ; zer := [] ; for n from 0 do fmodm := F(k, n) mod m ; cha := [op(cha), fmodm] ; if fmodm = 0 then zer := [op(zer), n] ; end if; if nops(zer) = 5 then break; end if; end do ; if [op(1..zer[2], cha) ] = [ op(zer[2]+1..zer[3], cha) ] and [op(1..zer[2], cha)] = [ op(zer[3]+1..zer[4], cha) ] and [op(1..zer[2], cha)] = [ op(zer[4]+1..zer[5], cha) ] then return zer[2] ; elif [op(1..zer[3], cha) ] = [ op(zer[3]+1..zer[5], cha) ] then return zer[3] ; else return zer[5] ; end if; end proc:
k := 4 ; seq( Pper(k, m), m=1..80) ;
|
|
MATHEMATICA
|
Table[s = t = Mod[{0, 1}, n]; cnt=1; While[tmp = Mod[4*t[[2]] + t[[1]], n]; t[[1]] = t[[2]]; t[[2]] = tmp; s!= t, cnt++]; cnt, {n, 100}] (* Vincenzo Librandi, Dec 20 2012, after T. D. Noe *)
|
|
CROSSREFS
|
Cf. A001076, A001175, A175181, A175182, A175183, A175184, A175185.
Sequence in context: A341741 A074723 A286455 * A189217 A183037 A063077
Adjacent sequences: A175180 A175181 A175182 * A175184 A175185 A175186
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
R. J. Mathar, Mar 01 2010
|
|
STATUS
|
approved
|
|
|
|