|
|
A175172
|
|
Primes p such that 3*2^p+1 is also prime.
|
|
2
|
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..4.
|
|
FORMULA
|
A000040 INTERSECT A002253. - R. J. Mathar, Jan 04 2011
|
|
EXAMPLE
|
For p=2, 3*2^2+1=13; p=5. 3*2^5+1=97; p=41, 3*2^41+1=6597069766657.
|
|
MAPLE
|
select(p->isprime(p) and isprime(3*2^p+1), [$0..5000]); # Muniru A Asiru, Dec 19 2018
|
|
MATHEMATICA
|
Select[Prime[Range[1000]], PrimeQ[3 2^# + 1] &] (* Vincenzo Librandi, Dec 19 2018 *)
|
|
PROG
|
(MAGMA) [p: p in PrimesUpTo(4000) | IsPrime(3*2^p+1)]
|
|
CROSSREFS
|
Cf. A000040, A002253.
Sequence in context: A185052 A088547 A009457 * A218057 A126469 A054859
Adjacent sequences: A175169 A175170 A175171 * A175173 A175174 A175175
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Vincenzo Librandi, Mar 09 2010
|
|
STATUS
|
approved
|
|
|
|