login
A175158
Primes p such that (p+18), (p+36) and (p+72) are also prime.
1
11, 431, 751, 911, 1051, 2521, 2731, 3511, 3761, 4951, 5261, 7211, 7681, 9221, 9461, 9661, 13451, 13841, 14851, 15241, 15731, 15901, 18181, 19471, 19681, 20071, 21121, 23531, 25621, 25981, 26321, 28051, 28771, 31991, 32341, 33791, 34631, 35081
OFFSET
1,1
LINKS
EXAMPLE
For p=11, 11+18=29, 11+36=47, 11+72=83; p=431, 431+18=449, 431+36=467, 431+72=503.
MATHEMATICA
Select[Prime[Range[5000]], PrimeQ[# + 18] && PrimeQ[# + 36] && PrimeQ[# + 72]&] (* Vincenzo Librandi, Apr 10 2013 *)
Select[Prime[Range[4000]], AllTrue[#+{18, 36, 72}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 08 2016 *)
PROG
(Magma) [ p: p in PrimesUpTo(100000) | IsPrime(p) and IsPrime(p+18) and IsPrime(p+36) and IsPrime(p+72)]
CROSSREFS
Sequence in context: A337527 A356210 A140840 * A360066 A354439 A180087
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 08 2010
STATUS
approved