|
|
A175118
|
|
a(1)=2. a(n) = the smallest prime p > a(n-1) such that p-a(n-1)+1 is composite.
|
|
3
|
|
|
2, 5, 13, 37, 61, 109, 157, 181, 229, 263, 271, 347, 367, 401, 409, 433, 457, 491, 499, 523, 547, 571, 619, 643, 677, 691, 739, 773, 787, 811, 859, 883, 907, 941, 967, 991, 1039, 1063, 1087, 1151, 1171, 1289, 1297, 1321, 1439, 1447, 1471, 1613, 1621, 1669
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
A175119(n) = a(n+1) - a(n) + 1.
|
|
LINKS
|
Zak Seidov, Table of n, a(n) for n = 1..1000
|
|
MATHEMATICA
|
a = 2; s = {a}; c = 1; lim = 50; While[c < m, p = NextPrime[a]; While[PrimeQ[p - a + 1], p = NextPrime[p]]; a = p; AppendTo[s, a]; c++]; s (* Zak Seidov, Nov 19 2012 *)
|
|
PROG
|
(Haskell)
a175118 n = a175118_list !! (n-1)
a175118_list = 2 : f 2 a000040_list where
f x ps = g $ dropWhile (<= x) ps where
g (q:qs) | a010051' (q - x + 1) == 1 = g qs
| otherwise = q : f q qs
-- Reinhard Zumkeller, Nov 20 2012
|
|
CROSSREFS
|
Cf. A175119, A175120.
Cf. A010051, A000040.
Sequence in context: A266966 A019415 A262203 * A092395 A233281 A218551
Adjacent sequences: A175115 A175116 A175117 * A175119 A175120 A175121
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Leroy Quet, Feb 14 2010
|
|
EXTENSIONS
|
Extended by Ray Chandler, Mar 10 2010
|
|
STATUS
|
approved
|
|
|
|