This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175114 First differences of A175113. 4
 1, 364, 7448, 51012, 206896, 620060, 1527624, 3281908, 6373472, 11454156, 19360120, 31134884, 48052368, 71639932, 103701416, 146340180, 201982144, 273398828, 363730392, 476508676, 615680240, 785629404, 991201288, 1237724852 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Convolution of the finite sequence 1,358,5279,11764,5279,358,1 with A000389. Number of points in the standard root system of the D_6 lattice having L_infinity norm n. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1). FORMULA a(n)= 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6), n>6. a(n) = ((2*n+1)^6-(2*n-1)^6)/2 = 4*n*(12*n^2+1)*(4*n^2+3), n>0. - Bruno Berselli, Dec 27 2010 G.f.: (358*x+5279*x^2+11764*x^3+5279*x^4+358*x^5+1+x^6)/(x-1)^6. - R. J. Mathar, Jan 03 2011 MATHEMATICA CoefficientList[Series[(358 x + 5279 x^2 + 11764 x^3 + 5279 x^4 + 358 x^5 + 1+x^6)/(x - 1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 20 2012 *) PROG (MAGMA) I:=[1, 364, 7448, 51012, 206896, 620060, 1527624]; [n le 7 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Dec 20 2012 CROSSREFS Cf. A110907, A117216, A175112. Sequence in context: A241617 A027799 A115191 * A022045 A278002 A107509 Adjacent sequences:  A175111 A175112 A175113 * A175115 A175116 A175117 KEYWORD easy,nonn AUTHOR R. J. Mathar, Feb 13 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.