login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175114 First differences of A175113. 4
1, 364, 7448, 51012, 206896, 620060, 1527624, 3281908, 6373472, 11454156, 19360120, 31134884, 48052368, 71639932, 103701416, 146340180, 201982144, 273398828, 363730392, 476508676, 615680240, 785629404, 991201288, 1237724852 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Convolution of the finite sequence 1,358,5279,11764,5279,358,1 with A000389. Number of points in the standard root system of the D_6 lattice having L_infinity norm n.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

a(n)= 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6), n>6.

a(n) = ((2*n+1)^6-(2*n-1)^6)/2 = 4*n*(12*n^2+1)*(4*n^2+3), n>0. - Bruno Berselli, Dec 27 2010

G.f.: (358*x+5279*x^2+11764*x^3+5279*x^4+358*x^5+1+x^6)/(x-1)^6. - R. J. Mathar, Jan 03 2011

MATHEMATICA

CoefficientList[Series[(358 x + 5279 x^2 + 11764 x^3 + 5279 x^4 + 358 x^5 + 1+x^6)/(x - 1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 20 2012 *)

PROG

(MAGMA) I:=[1, 364, 7448, 51012, 206896, 620060, 1527624]; [n le 7 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Dec 20 2012

CROSSREFS

Cf. A110907, A117216, A175112.

Sequence in context: A241617 A027799 A115191 * A022045 A278002 A107509

Adjacent sequences:  A175111 A175112 A175113 * A175115 A175116 A175117

KEYWORD

easy,nonn

AUTHOR

R. J. Mathar, Feb 13 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 10:53 EDT 2019. Contains 323390 sequences. (Running on oeis4.)