

A175070


a(n) is the sum of perfect divisors of n  n, where a perfect divisor of n is a divisor d such that d^k = n for some k >= 1.


3



0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

a(1) = 0, for n >=2: a(n) = sum of perfect divisors of n less than n.
a(n) > 0 for perfect powers n = A001597(m) for m > 2.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537
Index entries for sequences related to sums of divisors


FORMULA

a(n) = A175067(n)  n.


PROG

(PARI) A175070(n) = if(!ispower(n), 0, sumdiv(n, d, if((d>1)&&(d<n)&&((d^valuation(n, d))==n), d, 0))); \\ Antti Karttunen, Jun 12 2018
(PARI) first(n) = {my(res = vector(n)); for(i = 2, sqrtint(n), for(j = 2, logint(n, i), res[i^j] += i)); res} \\ David A. Corneth, Jun 12 2018


CROSSREFS

Cf. A175067.
Sequence in context: A210703 A275964 A284272 * A054923 A263145 A057108
Adjacent sequences: A175067 A175068 A175069 * A175071 A175072 A175073


KEYWORD

nonn


AUTHOR

Jaroslav Krizek, Jan 23 2010


STATUS

approved



