

A175025


Irregular table read by rows: Row n (of A175022(n) terms) contains the terms of row n of table A175023 with these terms arranged in nonincreasing order.


2



1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 1, 3, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 5, 5, 1, 4, 1, 1, 3, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 2, 2, 2, 3, 3, 6, 6, 1, 5, 1, 1, 4, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 2, 2, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

This table lists the parts of the partitions of the positive integers. Each partition is represented exactly once in this table. If n is such that 2^(m1) <= A175020(n) <= 2^m 1, then row n of this table gives one partition of m.


LINKS

Table of n, a(n) for n=1..105.


EXAMPLE

Table to start:
1
1,1
2
2,1
1,1,1
3
3,1
2,1,1
1,1,1,1
2,2
4
4,1
3,1,1
2,1,1,1
2,2,1
1,1,1,1,1
3,2
5
Note there are: 1 row that sums to 1, two rows that sum to 2, three rows that sum to 3, five rows that sum to 4, seven rows that sum to 5, etc., where 1,2,3,5,7,... are the number of unrestricted partitions of 1,2,3,4,5,...


CROSSREFS

Cf. A175020, A175022, A175023, A175024.
Sequence in context: A185331 A206474 A211999 * A076899 A152905 A096601
Adjacent sequences: A175022 A175023 A175024 * A175026 A175027 A175028


KEYWORD

base,nonn,tabf


AUTHOR

Leroy Quet, Nov 03 2009


EXTENSIONS

Extended by Ray Chandler, Mar 11 2010


STATUS

approved



