%I
%S 0,20,6040,1824060,550860080,166357920100,50239541010120,
%T 15172175027136140,4581946618654104160,1383732706658512320180,
%U 417882695464252066590200,126199190297497465597920220
%N y-values in the solution to x^2-57*y^2=1.
%C The corresponding values of x of this Pell equation are in A174759.
%H Vincenzo Librandi, <a href="/A175015/b175015.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (302,-1).
%F a(n) = 302*a(n-1)-a(n-2) with a(1)=0, a(2)=20.
%F G.f.: 20*x^2/(1-302*x+x^2).
%t LinearRecurrence[{302,-1},{0,20},30]
%o (MAGMA) I:=[0, 20]; [n le 2 select I[n] else 302*Self(n-1)-Self(n-2): n in [1..20]];
%Y Cf. A174759.
%K nonn,easy
%O 1,2
%A _Vincenzo Librandi_, Apr 15 2010
|