The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174882 A (3/2,-1) Somos-4 sequence. 5
 1, 1, -2, -8, -16, -16, 32, 128, 256, 256, -512, -2048, -4096, -4096, 8192, 32768, 65536, 65536, -131072, -524288, -1048576, -1048576, 2097152, 8388608, 16777216, 16777216, -33554432, -134217728, -268435456, -268435456 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Hankel transform of A051286. a(n+2) = -(-1)^floor(n/4) * 2^A098181(n). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,-16). FORMULA a(n) = ((3/2)*a(n-1)*a(n-3) - a(n-2)^2)/a(n-4), n>3. a(-n) = a(n-1) / 2^(2*n - 1) for all n in Z. - Michael Somos, Jan 06 2011 0 = a(n)*(+2*a(n+4)) + a(n+1)*(-3*a(n+3)) + a(n+2)*(+2*a(n+2)) for all n in Z. - Michael Somos, Sep 18 2014 a(n+4) = -16 * a(n) for all n in Z. - Michael Somos, Sep 02 2015 G.f.: -(2*x-1)*(4*x^2+3*x+1)/(1+16*x^4) . - R. J. Mathar, Aug 18 2017 EXAMPLE G.f. = 1 + x - 2*x^2 - 8*x^3 - 16*x^4 - 16*x^5 + 32*x^6 + 128*x^7 + ... MATHEMATICA a[ n_] := (-1)^Quotient[n + 2, 4] 2^(n - Mod[ Quotient[n + 1, 2], 2]); (* Michael Somos, Sep 18 2014 *) CoefficientList[Series[(1-2*x)*(4*x^2+3*x+1)/(1+16*x^4), {x, 0, 50}], x] (* G. C. Greubel, Feb 21 2018 *) PROG (PARI) {a(n) = (-1)^((n+2) \ 4) * 2^(n - ((n+1) \ 2 % 2))}; /* Michael Somos, Jan 06 2011 */ (PARI) x='x+O('x^30); Vec((1-2*x)*(4*x^2+3*x+1)/(1+16*x^4)) \\ G. C. Greubel, Feb 21 2018 (Magma) Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-2*x)*(4*x^2+3*x+1)/(1+16*x^4))) // G. C. Greubel, Feb 21 2018 CROSSREFS Cf. A051286, A098181. Sequence in context: A094513 A110004 A182039 * A080095 A193219 A213249 Adjacent sequences: A174879 A174880 A174881 * A174883 A174884 A174885 KEYWORD easy,sign AUTHOR Paul Barry, Mar 31 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 15:27 EST 2022. Contains 358588 sequences. (Running on oeis4.)