|
|
A174881
|
|
Number of admissible graphs of order n.
|
|
2
|
|
|
2, 36, 1728, 160000, 24300000, 5489031744, 1727094849536, 722204136308736, 387420489000000000, 259374246010000000000, 211988959518950443450368, 207728067204059288762843136, 240396446553194784543350546432
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
In Kontsevich, by definition, an admissible graph of order n is an ordered pair of maps i; j : {1, 2, 3, ..., n} --> {1, 2, 3, ..., n, L, R} where neither map has fixed points and both maps are distinct at every point. See p.18 of Dimofte.
|
|
REFERENCES
|
M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3 157{216, [q-alg/9709040v1].
|
|
LINKS
|
Table of n, a(n) for n=1..13.
Tudor Dimofte, Sergei Gukov, Quantum Field Theory and the Volume Conjecture , March 26, 2010.
|
|
FORMULA
|
a(n) = (n^n)*((n+1)^n) = (n*(n+1))^n. = A000312(n)*A000169(n+1).
|
|
EXAMPLE
|
a(1) = (1^1)*((1+1)^1) = 2.
a(2) = (2^2)*((2+1)^2) = 36.
a(3) = (3^3)*((3+1)^3) = 1728.
a(4) = (4^4)*((4+1)^4) = 160000.
a(5) = (5^5)*((5+1)^5) = 24300000.
|
|
CROSSREFS
|
Cf. A000169, A000312.
Sequence in context: A174580 A209803 A088026 * A126934 A303503 A178949
Adjacent sequences: A174878 A174879 A174880 * A174882 A174883 A174884
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Jonathan Vos Post, Mar 31 2010
|
|
STATUS
|
approved
|
|
|
|