This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174881 Number of admissible graphs of order n. 2
 2, 36, 1728, 160000, 24300000, 5489031744, 1727094849536, 722204136308736, 387420489000000000, 259374246010000000000, 211988959518950443450368, 207728067204059288762843136, 240396446553194784543350546432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS In Kontsevich, by definition, an admissible graph of order n is an ordered pair of maps i; j : {1, 2, 3, ..., n} --> {1, 2, 3, ..., n, L, R} where neither map has fixed points and both maps are distinct at every point. See p.18 of Dimofte. REFERENCES M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3 157{216, [q-alg/9709040v1]. LINKS Tudor Dimofte, Sergei Gukov, Quantum Field Theory and the Volume Conjecture , March 26, 2010. FORMULA a(n) = (n^n)*((n+1)^n) = (n*(n+1))^n. = A000312(n)*A000169(n+1). EXAMPLE a(1) = (1^1)*((1+1)^1) = 2. a(2) = (2^2)*((2+1)^2) = 36. a(3) = (3^3)*((3+1)^3) = 1728. a(4) = (4^4)*((4+1)^4) = 160000. a(5) = (5^5)*((5+1)^5) = 24300000. CROSSREFS Cf. A000169, A000312. Sequence in context: A174580 A209803 A088026 * A126934 A303503 A178949 Adjacent sequences:  A174878 A174879 A174880 * A174882 A174883 A174884 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Mar 31 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 08:32 EDT 2019. Contains 327187 sequences. (Running on oeis4.)