login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174881 Number of admissible graphs of order n. 2
2, 36, 1728, 160000, 24300000, 5489031744, 1727094849536, 722204136308736, 387420489000000000, 259374246010000000000, 211988959518950443450368, 207728067204059288762843136, 240396446553194784543350546432 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

In Kontsevich, by definition, an admissible graph of order n is an ordered pair of maps i; j : {1, 2, 3, ..., n} --> {1, 2, 3, ..., n, L, R} where neither map has fixed points and both maps are distinct at every point. See p.18 of Dimofte.

REFERENCES

M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3 157{216, [q-alg/9709040v1].

LINKS

Table of n, a(n) for n=1..13.

Tudor Dimofte, Sergei Gukov, Quantum Field Theory and the Volume Conjecture , March 26, 2010.

FORMULA

a(n) = (n^n)*((n+1)^n) = (n*(n+1))^n. = A000312(n)*A000169(n+1).

EXAMPLE

a(1) = (1^1)*((1+1)^1) = 2.

a(2) = (2^2)*((2+1)^2) = 36.

a(3) = (3^3)*((3+1)^3) = 1728.

a(4) = (4^4)*((4+1)^4) = 160000.

a(5) = (5^5)*((5+1)^5) = 24300000.

CROSSREFS

Cf. A000169, A000312.

Sequence in context: A174580 A209803 A088026 * A126934 A178949 A200571

Adjacent sequences:  A174878 A174879 A174880 * A174882 A174883 A174884

KEYWORD

easy,nonn

AUTHOR

Jonathan Vos Post, Mar 31 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 13:35 EDT 2017. Contains 290835 sequences.