OFFSET
1,1
COMMENTS
a(n) is the number of ordered pairs of maps i; j : {1, 2, 3, ..., n} --> {1, 2, 3, ..., n, L, R} where neither map has fixed points and both maps are distinct at every point. See p. 18 of Dimofte. In Kontsevich, these are called admissible graphs.
REFERENCES
M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3 157-216, [q-alg/9709040v1].
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..200
Tudor Dimofte, Sergei Gukov, Quantum Field Theory and the Volume Conjecture, arXiv:1003.4808 [math.GT], 2010.
EXAMPLE
a(1) = (1^1)*((1+1)^1) = 2.
a(2) = (2^2)*((2+1)^2) = 36.
a(3) = (3^3)*((3+1)^3) = 1728.
a(4) = (4^4)*((4+1)^4) = 160000.
a(5) = (5^5)*((5+1)^5) = 24300000.
MATHEMATICA
Table[(n*(n + 1))^n, {n, 15}] (* Paolo Xausa, Oct 13 2024 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 31 2010
STATUS
approved