

A174873


Difference d between two distinct primes a and b such that a*b+d are primes.


3



1, 2, 3, 6, 9, 12, 16, 18, 24, 26, 30, 36, 42, 48, 54, 60, 66, 69, 72, 78, 84, 86, 90, 96, 102, 108, 110, 114, 120, 126, 132, 135, 138, 144, 150, 156, 162, 168, 174, 180, 186, 189, 190, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 252, 258, 264, 270, 276, 280
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

2*3=6;32=1;6+1>primes, 3*5=15;53=2;15+2>primes, 2*5=10;52=3;10+3>primes, 7*11=77;117=6;77+6>primes, 22=2*11;112=9;22+9>primes,..


LINKS

Table of n, a(n) for n=1..59.


MATHEMATICA

lst={}; Do[pa=Prime[a]; Do[pb=Prime[b]; sp=pa*pb; dp=Abs[papb]; If[PrimeQ[spdp]&&PrimeQ[sp+dp], AppendTo[lst, dp]], {b, a+1, 3*6!}], {a, 3*6!}]; Take[Union@lst, 120]
d2dQ[{a_, b_}]:=Module[{c=ba}, AllTrue[a*b+{c, c}, PrimeQ]]; With[ {nn= 100}, Take[#[[2]]#[[1]]&/@Select[Union[Sort/@Tuples[ Prime[ Range[ 3nn]], 2]], d2dQ]//Union, nn]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 11 2017 *)


CROSSREFS

Cf. A088708.
Sequence in context: A077121 A302488 A140495 * A213172 A280984 A008810
Adjacent sequences: A174870 A174871 A174872 * A174874 A174875 A174876


KEYWORD

nonn


AUTHOR

Vladimir Joseph Stephan Orlovsky, Mar 31 2010


STATUS

approved



