login
A174859
A triangle sequence of polynomial coefficients:p(x,n)=Sum[Binomial[n, k]*(-x)^k*Sum[StirlingS2[n, m]*x^m, {m, 0, n - k}], {k, 0, n}]
0
1, 0, 1, 0, 1, -1, 0, 1, 0, -5, 0, 1, 3, -16, 15, 0, 1, 10, -40, 25, 56, 0, 1, 25, -81, -30, 370, -455, 0, 1, 56, -119, -469, 1841, -1960, -237, 0, 1, 119, -22, -2527, 7448, -5768, -7420, 16947, 0, 1, 246, 766, -10359, 24627, -2289, -76692, 126504, -64220, 0, 1
OFFSET
0,10
COMMENTS
Row sums are:
{1, 1, 0, -4, 3, 52, -170, -887, 8778, -1416, -415734,...}.
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 77.
FORMULA
p(x,n)=Sum[Binomial[n, k]*(-x)^k*Sum[StirlingS2[n, m]*x^m, {m, 0, n - k}], {k, 0, n}];
t(n,m)=coefficients(p(x,n))
EXAMPLE
{1},
{0, 1},
{0, 1, -1},
{0, 1, 0, -5},
{0, 1, 3, -16, 15},
{0, 1, 10, -40, 25, 56},
{0, 1, 25, -81, -30, 370, -455},
{0, 1, 56, -119, -469, 1841, -1960, -237},
{0, 1, 119, -22, -2527, 7448, -5768, -7420, 16947},
{0, 1, 246, 766, -10359, 24627, -2289, -76692, 126504, -64220},
{0, 1, 501, 4265, -36320, 60215, 119760, -570627, 784245, -248280, -529494}
MATHEMATICA
Clear[p, x, n];
p[x_, n_] = Sum[Binomial[n, k]*(-x)^k*Sum[StirlingS2[n, m]*x^m, {m, 0, n - k}], {k, 0, n}];
Table[CoefficientList[p[x, n], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A370012 A370013 A334364 * A274619 A230844 A054672
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Mar 31 2010
STATUS
approved