This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174846 E.g.f.: AGM(1, exp(4x)), where AGM(x, y) is the arithmetic-geometric mean of Gauss. 0
 1, 2, 6, 20, 66, 212, 756, 3320, 11346, -11068, 14556, 7202120, 18928476, -1376971048, -3526491144, 394396083920, 1016723438706, -148493230507228, -383613651929844, 71479338751223720, 184867683069498036 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Conjecture: limit |a(n)/n!|^(-1/n) = r exists and is finite with r<0.8... What is the radius of convergence of the e.g.f. as a power series in x? LINKS FORMULA E.g.f.: exp(2x)*AGM(1, cosh(2x)). E.g.f.: exp(2x)*AGM( cosh(x)^2, sqrt(cosh(2x)) ). EXAMPLE E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 20*x^3/3! + 66*x^4/4! +... Special value: A(log(2)/8) = Pi^(3/2)*sqrt(8)/gamma(1/4)^2 = 1.19814023473... PROG (PARI) {a(n)=n!*polcoeff(agm(1, exp(4*x+x*O(x^n))), n)} CROSSREFS Sequence in context: A027061 A279460 A083323 * A111285 A052991 A246019 Adjacent sequences:  A174843 A174844 A174845 * A174847 A174848 A174849 KEYWORD sign AUTHOR Paul D. Hanna, Jan 24 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 16:38 EDT 2019. Contains 322209 sequences. (Running on oeis4.)