login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174815 Decimal expansion of sqrt(2)*e^(gamma), where gamma is Euler's constant. 1
2, 5, 1, 8, 8, 1, 6, 7, 6, 9, 0, 9, 0, 3, 8, 0, 0, 7, 4, 4, 9, 5, 9, 3, 4, 5, 3, 5, 4, 1, 7, 7, 8, 0, 3, 7, 8, 8, 4, 3, 3, 3, 6, 0, 2, 1, 3, 6, 1, 3, 3, 2, 6, 4, 8, 8, 0, 4, 5, 9, 8, 9, 1, 5, 5, 4, 9, 7, 2, 1, 4, 4, 3, 1, 4, 8, 9, 6, 6, 6, 5, 2, 3, 0, 3, 8, 3, 2, 0, 9, 5, 2, 4, 4, 4, 7, 5, 6, 5, 6, 8, 7, 9, 9, 2, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This constant appears when comparing various divergent series after n iterations.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Mersenne Prime

Wikipedia, Euler-Mascheroni constant

FORMULA

lim_{n->oo} e^sum(1/k, k=1..n) / sqrt(1+2+3+...+n) = sqrt(2)*e^gamma.

EXAMPLE

sqrt(2)*e^(gamma) = 2.5188167690903800744959345354177803788433360213612...

MAPLE

evalf(sqrt(2)*exp(gamma), 99);

MATHEMATICA

RealDigits[Sqrt[2]*Exp[EulerGamma], 10, 100][[1]] (* G. C. Greubel, Sep 06 2018 *)

PROG

(PARI) sqrt(2)*exp(Euler)  \\ Charles R Greathouse IV, Aug 01 2011

(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(2)* Exp(EulerGamma(R)); // G. C. Greubel, Sep 06 2018

CROSSREFS

Equals A002193*A001113^A001620.

Sequence in context: A268980 A297012 A259449 * A021401 A280637 A271872

Adjacent sequences:  A174812 A174813 A174814 * A174816 A174817 A174818

KEYWORD

nonn,cons

AUTHOR

Ryan Gerard (rsgerard(AT)gmail.com), Mar 29 2010

EXTENSIONS

Comments containing infinities removed by Jonathan Sondow, Aug 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 20:35 EDT 2019. Contains 328103 sequences. (Running on oeis4.)