login
A174810
A transform of the little Schroeder numbers A001003.
2
1, 1, 4, 17, 81, 410, 2169, 11847, 66306, 378297, 2192011, 12864668, 76313865, 456837181, 2756271064, 16743326577, 102319639173, 628599899558, 3880049052441, 24051163355499, 149654739889478, 934426798835377
OFFSET
0,3
COMMENTS
Hankel transform is A174811.
FORMULA
G.f.: (1+x+x^2-sqrt(1-6x-5x^2+2x^3+x^4))/(4x(1+x));
G.f.: 1/(1-x(1+x)/(1-2x(1+x)/(1-x(1+x)/(1-2x(1+x)/(1-... (continued fraction);
a(n)=sum{k=0..n, C(k,n-k)*A001003(k)}.
Recurrence: (n+1)*a(n) = (5-n)*a(n-5) - 3*(n-4)*a(n-4) + 3*(n-1)*a(n-3) + (11*n-13)*a(n-2) + (5*n-4)*a(n-1). - Fung Lam, Jan 30 2014
MATHEMATICA
CoefficientList[Series[(1+x+x^2-Sqrt[1-6*x-5*x^2+2*x^3+x^4])/(4*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 30 2014 *)
PROG
(PARI) x='x+O('x^66); Vec((1+x+x^2-sqrt(1-6*x-5*x^2+2*x^3+x^4))/(4*x*(1+x))) \\ Joerg Arndt, Jan 30 2014
CROSSREFS
Sequence in context: A351150 A204326 A151250 * A121545 A078845 A230126
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 29 2010
STATUS
approved