OFFSET
1,2
COMMENTS
The corresponding values of y of this Pell equation are in A174772.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
Index entries for linear recurrences with constant coefficients, signature (46,-1).
FORMULA
a(n) = 46*a(n-1)-a(n-2) with a(1)=1 and a(2)=23.
G.f.: x*(1-23*x)/(1-46*x+x^2).
a(n+1) = S(n,46) - 23*S(n-1,46), n>=0, with Chebyshev's S-polynomials A049310. - Wolfdieter Lang, Jun 19 2013
a(n) = (-4+23/sqrt(33))*(23+4*sqrt(33))^(-n)*(6072+1057*sqrt(33)+sqrt(33)*(23+4*sqrt(33))^(2*n))/2. - Colin Barker, Jun 10 2016
MATHEMATICA
LinearRecurrence[{46, -1}, {1, 23}, 30]
PROG
(Magma) I:=[1, 23]; [n le 2 select I[n] else 46*Self(n-1)-Self(n-2): n in [1..20]];
(PARI) Vec(x*(1-23*x)/(1-46*x+x^2) + O(x^20)) \\ Colin Barker, Jun 10 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 13 2010
STATUS
approved