The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174723 a(n) = n*(4*n^2 - 3*n + 5)/6. 7
 1, 5, 16, 38, 75, 131, 210, 316, 453, 625, 836, 1090, 1391, 1743, 2150, 2616, 3145, 3741, 4408, 5150, 5971, 6875, 7866, 8948, 10125, 11401, 12780, 14266, 15863, 17575, 19406, 21360, 23441, 25653, 28000, 30486, 33115, 35891, 38818, 41900, 45141 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS We prove that a(n) = Sum_{k=1..n^2} floor(sqrt(k)): a(n) = Sum_{k=1..3} 1 + Sum_{k=4..8} 2 + ... + Sum_{k=(n-1)^2..n^2 - 1} (n-1) + n = 3*1 + 5*2 + 7*3 + ... + (2n-1)(n-1)+ n = Sum_{k=1..n} (2k-1)*(k-1) + n = 2*Sum_{k=1..n} k^2 - 3*Sum_{k=1..n} k + 2n = 2n(n+1)(2n+1)/6 - 3n(n+1)/2 + 2n = n*(4n^2 - 3n + 5) / 6. Notice that a(4) = 4 + 3*5 + 2*6 + 1*7 and a(8) = 8 + 7*9 + 6*10 + 5*11 + 4*12 + 3*13 + 2*14 + 1*15. In general, a(n) = n + Sum_{k=1..n-1} (n-k)*(n+k). - J. M. Bergot, Jul 31 2013 REFERENCES T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, 1954. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA G.f. x*(1 + x + 2*x^2) / (x-1)^4. - R. J. Mathar, Nov 07 2011 a(1)=1, a(2)=5, a(3)=16, a(4)=38; for n > 4, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jan 16 2012 EXAMPLE From Bruno Berselli, Feb 17 2015: (Start) Third differences:  1, 2,  4,  4,   4,   4,   4, (repeat 4) ... (A151798) Second differences: 1, 3,  7, 11,  15,  19,  23,  27,   31, ... (A131098) First differences:  1, 4, 11, 22,  37,  56,  79, 106,  137, ... (A084849) ------------------------------------------------------------------------- This sequence:      1, 5, 16, 38,  75, 131, 210, 316,  453, ... ------------------------------------------------------------------------- Partial sums:       1, 6, 22, 60, 135, 266, 476, 792, 1245, ... (A071239) (End) MAPLE A174723 := proc(n)         n*(4*n^2-3*n+5)/6 ; end proc: seq( A174723(n), n=1..20) ; # R. J. Mathar, Nov 07 2011 MATHEMATICA Table[n (4n^2-3n+5)/6, {n, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 5, 16, 38}, 50] (* Harvey P. Dale, Jan 16 2012 *) PROG (MAGMA) I:=[1, 5, 16, 38]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 04 2012 (PARI) a(n)=n*(4*n^2-3*n+5)/6 \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Cf. A000196, A071239, A084849, A131098, A151798. Sequence in context: A042645 A218259 A211807 * A011932 A131283 A082199 Adjacent sequences:  A174720 A174721 A174722 * A174724 A174725 A174726 KEYWORD nonn,easy AUTHOR Michel Lagneau, Mar 28 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 4 07:32 EDT 2020. Contains 333213 sequences. (Running on oeis4.)