login
A174718
Triangle T(n, k, q) = (1-q^n)*( binomial(n, k) - 1 ) + 1, with q = 2, read by rows.
3
1, 1, 1, 1, -2, 1, 1, -13, -13, 1, 1, -44, -74, -44, 1, 1, -123, -278, -278, -123, 1, 1, -314, -881, -1196, -881, -314, 1, 1, -761, -2539, -4317, -4317, -2539, -761, 1, 1, -1784, -6884, -14024, -17594, -14024, -6884, -1784, 1, 1, -4087, -17884, -42412, -63874, -63874, -42412, -17884, -4087, 1
OFFSET
0,5
COMMENTS
The row sums of this class of sequences, for varying q, is given by Sum_{k=0..n} T(n, k, q) = q^n * (n+1) + 2^n * (1 - q^n). - G. C. Greubel, Feb 09 2021
FORMULA
T(n, k, q) = (1-q^n)*( binomial(n, k) - 1 ) + 1, with q=2.
Sum_{k=0..n} T(n, k, 2) = 2^n *(n + 2 - 2^n) = A001787(n+1) - A020522(n). - G. C. Greubel, Feb 09 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -2, 1;
1, -13, -13, 1;
1, -44, -74, -44, 1;
1, -123, -278, -278, -123, 1;
1, -314, -881, -1196, -881, -314, 1;
1, -761, -2539, -4317, -4317, -2539, -761, 1;
1, -1784, -6884, -14024, -17594, -14024, -6884, -1784, 1;
1, -4087, -17884, -42412, -63874, -63874, -42412, -17884, -4087, 1;
MATHEMATICA
T[n_, k_, q_]:= 1 +(1-q^n)*(Binomial[n, k] -1);
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Sage)
def T(n, k, q): return 1 + (1-q^n)*(binomial(n, k) - 1)
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 09 2021
(Magma)
T:= func< n, k, q | 1 + (1-q^n)*(Binomial(n, k) -1) >;
[T(n, k, 2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 09 2021
CROSSREFS
Cf. A000012 (q=1), this sequence (q=2), A174719 (q=3), A174720 (q=4).
Sequence in context: A186430 A173889 A156885 * A176291 A337514 A054505
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Mar 28 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 09 2021
STATUS
approved