login
A174716
Averages of twin prime pairs of the form : sum of two or more consecutive squares.
3
30, 1230, 1290, 1482, 2730, 3390, 3930, 4092, 4230, 5520, 8010, 8970, 13680, 16830, 17190, 19890, 20982, 22092, 22110, 27690, 36528, 37812, 41202, 60102, 71340, 81930, 96330, 97650, 98010, 108960, 110880, 111270, 116790, 121632, 129402
OFFSET
1,1
COMMENTS
1^2+2^2+3^2+4^2=30, 14^2+15^2+16^2+17^2+18^2=1230,..
If the average is allowed to be the sum of one or more consecutive squares, then there is one additional term 4 = 2^2. - Chai Wah Wu, Feb 03 2016
MATHEMATICA
mx=600; mz=mx^2+(mx+1)^2; lst={}; Do[p=q^2; Do[p+=n^2; If[PrimeQ[p-1]&&PrimeQ[p+1], If[p>mz, Break[]]; AppendTo[lst, p]], {n, q+1, mx+1}], {q, 1, mx}]; Union@lst
CROSSREFS
Sequence in context: A269682 A269471 A060076 * A163521 A273416 A002456
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition clarified by Chai Wah Wu, Feb 03 2016
STATUS
approved