login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174702 The number of permutations p of {1,...,n} such that |p(i)-p(i+1)| is in {1,2,3,4,5} for all i from 1 to n-1. 11
1, 2, 6, 24, 120, 720, 3600, 15600, 61872, 236388, 901748, 3509106, 13716168, 53327912, 205176192, 780194112, 2937412512, 10991746368, 40961976672, 152144989056 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For n>1, a(n)/2 is the number of Hamiltonian paths on the graph with vertex set {1,...,n} where i is adjacent to j iff |i-j| is in {1,2,3,4,5}.

LINKS

Table of n, a(n) for n=1..20.

W. Edwin Clark, permutations p in S_n such that m <= |p(i)-p(i+1)| <= M for i from 1 to n-1, SeqFan Discussion, Mar 2010.

MAPLE

f:= proc(m, M, n) option remember; local i, l, p, cnt; l:= array ([i$i=1..n]); cnt:=0; p:= proc(t) local d, j, h; if t=n then d:= `if` (t=1, m, abs(l[t]-l[t-1])); if m<=d and d<=M then cnt:= cnt+1 fi else for j from t to n do l[t], l[j]:= l[j], l[t]; d:= `if` (t=1, m, abs(l[t]-l[t-1])); if m<=d and d<=M then p(t+1) fi od; h:= l[t]; for j from t to n-1 do l[j]:= l[j+1] od; l[n]:= h fi end; p(1); cnt end: a:= n-> f(1, 5, n): seq (a(n), n=1..10); # Alois P. Heinz, Mar 27 2010

CROSSREFS

Cf. A003274, A174700, A174701, A174703, A174704, A174705, A174706, A174707, A174708, A185030, A216837.

Sequence in context: A189853 A189857 A189860 * A173846 A154654 A189862

Adjacent sequences:  A174699 A174700 A174701 * A174703 A174704 A174705

KEYWORD

more,nonn

AUTHOR

W. Edwin Clark, Mar 27 2010

EXTENSIONS

a(15)-a(20) from R. H. Hardin, May 06 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 28 00:26 EDT 2014. Contains 244987 sequences.