login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174700 The number of permutations p of {1,...,n} such that |p(i)-p(i+1)| is in {1,2,3} for all i from 1 to n-1. 12
1, 2, 6, 24, 72, 180, 428, 1042, 2512, 5912, 13592, 30872, 69560, 155568, 345282, 761312, 1669612, 3645236, 7927404, 17180092, 37119040, 79986902, 171964534, 368959906, 790214816, 1689779842, 3608413750, 7696189046 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For n>1, a(n)/2 is the number of Hamiltonian paths on the graph with vertex set {1,...,n} where i is adjacent to j iff |i-j| is in {1,2,3}.

LINKS

Table of n, a(n) for n=1..28.

MAPLE

f:= proc(m, M, n) option remember; local i, l, p, cnt; l:= array([i$i=1..n]); cnt:=0; p:= proc(t) local d, j, h; if t=n then d:=`if`(t=1, m, abs(l[t]-l[t-1])); if m<=d and d<=M then cnt:= cnt+1 fi else for j from t to n do l[t], l[j]:= l[j], l[t]; d:=`if`(t=1, m, abs(l[t]-l[t-1])); if m<=d and d<=M then p(t+1) fi od; h:= l[t]; for j from t to n-1 do l[j]:= l[j+1] od; l[n]:= h fi end; p(1); cnt end: a:=n->f(1, 3, n); # Alois P. Heinz, Mar 27 2010

CROSSREFS

Cf. A003274, A174701, A174702, A174703, A174704, A174705, A174706, A174707, A174708, A185030, A216837.

Sequence in context: A236625 A096259 A087645 * A216158 A178847 A173844

Adjacent sequences:  A174697 A174698 A174699 * A174701 A174702 A174703

KEYWORD

nonn

AUTHOR

W. Edwin Clark, Mar 27 2010

EXTENSIONS

a(19)-a(28) from R. H. Hardin, May 06 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 23:06 EST 2014. Contains 252326 sequences.