login
Sequence A154690 adjusted to leading one:t(n,m)=A154690(n,m)-A154690(n,0)+1
0

%I #2 Mar 30 2012 17:34:39

%S 1,1,1,1,4,1,1,10,10,1,1,24,32,24,1,1,58,88,88,58,1,1,140,236,256,236,

%T 140,1,1,334,628,712,712,628,334,1,1,784,1648,1984,1984,1984,1648,784,

%U 1,1,1810,4240,5536,5536,5536,5536,4240,1810,1,1,4116,10676,15296,15776

%N Sequence A154690 adjusted to leading one:t(n,m)=A154690(n,m)-A154690(n,0)+1

%C Row sums are:

%C 1, 2, 6, 22, 82, 294, 1010, 3350, 10818, 34246, 106834,...

%F t(n,m)=A154690(n,m)-A154690(n,0)+1

%e {1},

%e {1, 1},

%e {1, 4, 1},

%e {1, 10, 10, 1},

%e {1, 24, 32, 24, 1},

%e {1, 58, 88, 88, 58, 1},

%e {1, 140, 236, 256, 236, 140, 1},

%e {1, 334, 628, 712, 712, 628, 334, 1},

%e {1, 784, 1648, 1984, 1984, 1984, 1648, 784, 1},

%e {1, 1810, 4240, 5536, 5536, 5536, 5536, 4240, 1810, 1},

%e {1, 4116, 10676, 15296, 15776, 15104, 15776, 15296, 10676, 4116, 1}

%t a = 2; b = 1;

%t t[n_, m_] = (a^m*b^(n - m) + b^m*a^(n - m))*Binomial[n, m];

%t Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];

%t Flatten[%]

%Y A154690(n, m)

%K nonn,tabl,uned

%O 0,5

%A _Roger L. Bagula_, Mar 26 2010