login
Sequence A154692 adjusted to leading one:t(n,m)=A154692(n,m)-A154692(n,0)+1
0

%I #2 Mar 30 2012 17:34:39

%S 1,1,1,1,12,1,1,56,56,1,1,216,336,216,1,1,776,1526,1526,776,1,1,2700,

%T 6228,7848,6228,2700,1,1,9236,24146,35486,35486,24146,9236,1,1,31248,

%U 90960,150432,174624,150432,90960,31248,1,1,104816,336206,614846,796286

%N Sequence A154692 adjusted to leading one:t(n,m)=A154692(n,m)-A154692(n,0)+1

%C Row sums are:

%C 1, 2, 14, 114, 770, 4606, 25706, 137738, 719906, 3704310, 18870458,...

%F t(n,m)=A154692(n,m)-A154692(n,0)+1

%e {1},

%e {1, 1},

%e {1, 12, 1},

%e {1, 56, 56, 1},

%e {1, 216, 336, 216, 1},

%e {1, 776, 1526, 1526, 776, 1},

%e {1, 2700, 6228, 7848, 6228, 2700, 1},

%e {1, 9236, 24146, 35486, 35486, 24146, 9236, 1},

%e {1, 31248, 90960, 150432, 174624, 150432, 90960, 31248, 1},

%e {1, 104816, 336206, 614846, 796286, 796286, 614846, 336206, 104816, 1},

%e {1, 348948, 1224588, 2454168, 3478008, 3859032, 3478008, 2454168, 1224588, 348948, 1}

%t a = 2; b = 3;

%t t[n_, m_] = (a^m*b^(n - m) + b^m*a^(n - m))*Binomial[n, m];

%t Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];

%t Flatten[%]

%Y A154692(n, m)

%K nonn,tabl,uned

%O 0,5

%A _Roger L. Bagula_, Mar 26 2010