This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174640 A triangular sequence:t(n,m)=A033306(n,m)-A033306(n,0)+1 0
 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 10, 6, 1, 1, 24, 49, 49, 24, 1, 1, 110, 248, 298, 248, 110, 1, 1, 545, 1308, 1749, 1749, 1308, 545, 1, 1, 2877, 7229, 10421, 11611, 10421, 7229, 2877, 1, 1, 16114, 41998, 64114, 77134, 77134, 64114, 41998, 16114, 1, 1, 95496 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Row sums are: 1, 2, 3, 6, 24, 148, 1016, 7206, 52667, 398722, 3137084,... REFERENCES This notebook downloaded from http://mathworld.wolfram.com/notebooks/Combinatorics/BellNumber.nb. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 80. LINKS FORMULA t(n,m)=A033306(n,m)-A033306(n,0)+1 EXAMPLE {1}, {1, 1}, {1, 1, 1}, {1, 2, 2, 1}, {1, 6, 10, 6, 1}, {1, 24, 49, 49, 24, 1}, {1, 110, 248, 298, 248, 110, 1}, {1, 545, 1308, 1749, 1749, 1308, 545, 1}, {1, 2877, 7229, 10421, 11611, 10421, 7229, 2877, 1}, {1, 16114, 41998, 64114, 77134, 77134, 64114, 41998, 16114, 1}, {1, 95496, 256626, 410226, 523476, 565434, 523476, 410226, 256626, 95496, 1} MATHEMATICA b[0] := 1; b[n_] := b[n] = Total[Table[b[k]Binomial[n - 1, k], {k, 0, n - 1}]]; a = b /@ Range[0, 70]; t[n_, m_] := Binomial[n, m]*a[[m + 1]]*a[[n - m + 1]]; Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A263755 A135879 A176224 * A138169 A139331 A173886 Adjacent sequences:  A174637 A174638 A174639 * A174641 A174642 A174643 KEYWORD nonn,tabl,uned AUTHOR Roger L. Bagula, Mar 25 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 00:13 EDT 2017. Contains 289648 sequences.