The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174626 Antidiagonal of sequence: q=5; t(n,m) = Sum((2*cos(i*Pi/q))^m*cos[(m - 2*n)*i*Pi/q), {i, 0, q - 1}]/q. 0
 1, 0, 1, 0, 1, 1, 1, 0, 2, 2, 0, 1, 1, 3, 5, 0, 1, 1, 3, 5, 11, 1, 0, 2, 2, 6, 10, 22, 0, 1, 1, 3, 5, 11, 21, 43, 0, 1, 1, 3, 5, 11, 21, 43, 85, 1, 0, 2, 2, 6, 10, 22, 42, 86, 170 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Row sums are {1, 1, 2, 3, 5, 10, 20, 45, 100, 215, ...}. REFERENCES J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 41. LINKS FORMULA q=5; t(n,m) = Sum[(2*cos(i*Pi/q))^m*cos((m - 2*n)*i*Pi/q), {i, 0, q - 1}]/q; out_n,m = Antidiagonal(t(n,m)). EXAMPLE {1}, {0, 1}, {0, 1, 1}, {0, 0, 2, 1}, {0, 0, 1, 3, 1}, {1, 0, 0, 3, 4, 2}, {0, 1, 0, 1, 6, 5, 7}, {0, 1, 1, 0, 4, 10, 7, 22}, {0, 0, 2, 1, 1, 10, 15, 14, 57}, {0, 0, 1, 3, 1, 5, 20, 22, 36, 127} MATHEMATICA t[n_, m_, q_] = Sum[(2*Cos[i*Pi/q])^m*Cos[(m - 2*n)*i*Pi/q], {i, 0, q - 1}]/q; a = Table[Table[If[ Rationalize[ N[t[n, m, q]]] < 10^(-10), 0, Rationalize[N[t[n, m, q]]]], {m, 0, 10}, {n, 0, 10}], {q, 3, 10, 2}]; Table[Flatten[Table[Table[a[[l]][[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]], {l, 1, Length[a]}] CROSSREFS Sequence in context: A279006 A112555 A108561 * A264909 A104579 A079531 Adjacent sequences:  A174623 A174624 A174625 * A174627 A174628 A174629 KEYWORD nonn,tabl,uned AUTHOR Roger L. Bagula, Mar 24 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 07:33 EDT 2020. Contains 337335 sequences. (Running on oeis4.)