login
Decimal expansion of log(2)/log(phi) - 1 where phi=(1+sqrt(5))/2.
0

%I #21 Jun 27 2021 07:55:39

%S 4,4,0,4,2,0,0,9,0,4,1,2,5,5,6,4,7,9,0,1,7,5,5,1,4,9,9,5,8,7,8,6,3,8,

%T 0,2,4,5,8,6,0,4,1,4,2,6,8,4,0,5,6,0,8,1,6,4,5,4,4,1,7,2,9,5,6,6,5,1,

%U 3,2,8,4,3,5,2,9,9,0,3,6,7,2,7,9,5,2,8,2,2,0,4,9,7,3,5,7,5,9,1,6,3,1,2,7

%N Decimal expansion of log(2)/log(phi) - 1 where phi=(1+sqrt(5))/2.

%H Brigitte Vallée, <a href="http://www.numdam.org/item?id=JTNB_2000__12_2_531_0">Digits and continuants in Euclidean algorithms. Ergodic vs tauberian theorems</a>, Journal de théorie des nombres de Bordeaux 12 (2000), 519-558.

%F Equals A104287-1.

%e 0.440420090412556479017551499587863802458604142684...

%t RealDigits[Log[2]/Log[GoldenRatio] - 1, 10, 120][[1]] (* _Harvey P. Dale_, Apr 04 2011 *)

%Y Cf. A104287.

%K cons,nonn

%O 0,1

%A _Benoit Cloitre_, Mar 23 2010