The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174595 a(n) = 5*n^2/8 - n + 1/2 + (-1)^n*(-3*n^2/8 + n - 1/2). 2
 0, 0, 1, 4, 4, 16, 9, 36, 16, 64, 25, 100, 36, 144, 49, 196, 64, 256, 81, 324, 100, 400, 121, 484, 144, 576, 169, 676, 196, 784, 225, 900, 256, 1024, 289, 1156, 324, 1296, 361, 1444, 400, 1600, 441, 1764, 484, 1936, 529, 2116, 576, 2304, 625, 2500, 676, 2704, 729, 2916, 784, 3136, 841, 3364, 900 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Based on A174571. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1). FORMULA a(n) = A029578(n)^2. Interleaving of A000290 and 4*A000290. G.f.: -x^2*(4*x+1)*(x^2+1) / ( (x-1)^3*(1+x)^3 ). a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6). E.g.f.: (1/8)*exp(-x)*(- 4 - 5*x - 3*x^2 +exp(2*x)*(4 - 3*x + 5*x^2)). - Stefano Spezia, Nov 02 2018 MATHEMATICA LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 0, 1, 4, 4, 16}, 70] (* Harvey P. Dale, Jun 26 2012 *) CoefficientList[Series[1/8 E^-x (-4 - 5 x - 3 x^2 + E^(2 x) (4 - 3 x + 5 x^2)), {x, 0, 50}], x]*Table[k!, {k, 0, 50}] (* Stefano Spezia, Nov 02 2018 *) PROG (MAGMA) [5*n^2/8-n+1/2+(-1)^n*(-3*n^2/8+n-1/2): n in [0..60]]; // Vincenzo Librandi, Aug 04 2011 (PARI) vector(50, n, n--; (5*n^2 -8*n + 4 - (-1)^n*(3*n^2 - 8*n +4))/8) \\ G. C. Greubel, Nov 02 2018 CROSSREFS Sequence in context: A246763 A319070 A227074 * A160020 A273370 A273830 Adjacent sequences:  A174592 A174593 A174594 * A174596 A174597 A174598 KEYWORD nonn,easy AUTHOR Paul Curtz, Nov 29 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 12:11 EDT 2021. Contains 342949 sequences. (Running on oeis4.)