The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174592 Numbers n such that n^2 + 2*(n+2)^2 is a square. 1
 2, 46, 658, 9182, 127906, 1781518, 24813362, 345605566, 4813664578, 67045698542, 933826115026, 13006519911838, 181157452650722, 2523197817198286, 35143611988125298, 489487370016555902, 6817679568243657346 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The equation n^2 + 2*(n+2)^2 = y^2 is transformed via x=3n+4 into the Diophantine equation x^2 - 3*y^2 = -8, and by division through 4 to (x/2)^2 - 3*(y/2)^2 = -2. Setting xbar = x/2 and ybar = y/2, the fundamental solution to xbar^2 - 3*ybar^2 = -2 is xbar = ybar = 1, and the general solution is given by multiplying (1+sqrt(3))*(u+sqrt(3)*v)^j, j=1,2,3,4,... where (u,v) = (A001075(j), A001353(j)). Expanding this product, isolating the square root., etc., and discarding the solutions that are associated with non-integer n generates the series of all solutions. - R. J. Mathar, May 02 2010 Also numbers n such that the sum of the four pentagonal numbers starting at index n is equal to the sum of four consecutive triangular numbers. - Colin Barker, Dec 19 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..890 Index entries for linear recurrences with constant coefficients, signature (15,-15,1). FORMULA From Bruno Berselli, Sep 07 2011:  (Start) G.f.: 2*x*(1+8*x-x^2)/((1-x)*(1-14*x+x^2)). a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3). a(n) = -4/3 + ((sqrt(3)+1)^(4n-1) - (sqrt(3)-1)^(4n-1))/(3*2^(2n-1)).  (End) MATHEMATICA eq = Simplify[n^2 + 2*(n+2)^2 == y^2 /. n -> (x - 4)/3]; r = Reduce[x >= 0 && y >= 0 && eq, x, Integers] /. C[1] -> k; xx[k_] = x /. ToRules[r[[-1, -1]]]; Select[Table[Simplify[(xx[k] - 4)/3], {k, 1, 34}], IntegerQ] (* Jean-François Alcover, Sep 06 2011, after R. J. Mathar *) CoefficientList[Series[2 (1 + 8 x - x^2)/((1 - x) (1- 14 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2014 °) PROG (MAGMA) [n: n in [0..70000000] | IsSquare(3*n^2+8*n+8)]; (MAGMA) I:=[2, 46, 658]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..17]];  // Bruno Berselli, Sep 07 2011 CROSSREFS Sequence in context: A302377 A303098 A302949 * A066555 A290046 A012001 Adjacent sequences:  A174589 A174590 A174591 * A174593 A174594 A174595 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Apr 11 2010 EXTENSIONS More terms from R. J. Mathar, May 02 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 12:11 EDT 2021. Contains 342949 sequences. (Running on oeis4.)