OFFSET
1,1
COMMENTS
This sequence is given only for n <=5000 with max(s(n)) = 10. But we can find long sequences of primes, for example,length(s(12956))= 55, and corresponding to A006577(282984 + k), k = 0,1,...,54. We obtain a sequence of 55 consecutive primes numbers given in the example below.
EXAMPLE
a(1) = 3 represents the run (7, 2, 5).
a(2) = 2 represents the run (3, 19).
a(3)=2 represents the run (17, 17).
a(7) = 4 represents the run (19, 19, 107, 107).
a(12956) = 55 represents the run (83, 251, 83, 251, 127, 127, 127, 251, 83, 83, 83, 83, 83, 83, 83, 83, 83, 251, 83, 83, 83, 83, 83, 83, 101, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 251, 251, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83)
MAPLE
nn:=2000:T:=array(1..nn):for n from 1 to nn do: m:=n:for p from 0 to 1000 while (m<>1) do: if irem(m, 2)=1 then m:=3*m+1:else m:=m/2:fi:od:T[n]:=p:od:ii:=1:for i from 1 to nn do:if type(T[i], prime)=true and type(T[i+1], prime)=true then ii:=ii+1:else if ii<>1 then printf(`%d, `, ii):ii:=1:else fi:fi:od:
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Michel Lagneau, Mar 22 2010
STATUS
approved