Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 05 2023 11:18:47
%S 1,2,5,10,23,44,99,188,421,798,1785,3382,7563,14328,32039,60696,
%T 135721,257114,574925,1089154,2435423,4613732,10316619,19544084,
%U 43701901,82790070,185124225,350704366,784198803,1485607536,3321919439,6293134512,14071876561
%N Partial sums of odd Fibonacci numbers (A014437).
%H Colin Barker, <a href="/A174542/b174542.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,-4,1,-1).
%F a(2n) = (1/2)*(Fibonacci(3n+2)-1).
%F a(2n+1) = (1/2)*(Fibonacci(3n+1)+Fibonacci(3n+3)-1).
%F a(n) = a(n-1)+4*a(n-2)-4*a(n-3)+a(n-4)-a(n-5) for n>4. - _Colin Barker_, Oct 26 2014
%F G.f.: x*(x^3-x^2+x+1) / ((x-1)*(x^4+4*x^2-1)). - _Colin Barker_, Oct 26 2014
%F From _Vladimir Reshetnikov_, Oct 30 2015: (Start)
%F a(n) = ((sin(Pi*n/2)*sqrt(5/phi) - cos(Pi*n/2)/phi^2)/phi^(3*n/2) + (sqrt(5*phi)*sin(Pi*n/2)^2 + phi^2*cos(Pi*n/2)^2)*phi^(3*n/2))/(2*sqrt(5)) - 1/2, where phi=(1+sqrt(5))/2.
%F E.g.f.: phi^2*cosh(phi^(3/2)*x)/(2*sqrt(5)) + sqrt(phi)*sinh(phi^(3/2)*x)/2 - cos(x/phi^(3/2))/(2*sqrt(5)*phi^2) + sin(x/phi^(3/2))/(2*sqrt(phi)) - exp(x)/2.
%F (End)
%t s=0;lst={};Do[f=Fibonacci[n];If[OddQ[f],AppendTo[lst,s+=f]],{n,0,5!}];lst
%t CoefficientList[Series[(x^3 - x^2 + x + 1)/((x - 1) (x^4 + 4 x^2 - 1)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Oct 27 2014 *)
%t Accumulate[Select[Fibonacci[Range[50]],OddQ]] (* or *) LinearRecurrence[{1,4,-4,1,-1},{1,2,5,10,23},40] (* _Harvey P. Dale_, Sep 05 2023 *)
%o (PARI) Vec(x*(x^3-x^2+x+1)/((x-1)*(x^4+4*x^2-1)) + O(x^100)) \\ _Colin Barker_, Oct 26 2014
%o (Magma) &cat[[(1/2)*(Fibonacci(3*n+2)-1), (1/2)*(Fibonacci(3*n+1)+Fibonacci(3*n+3)-1)]: n in [1..30]]; // _Vincenzo Librandi_, Oct 27 2014
%Y Cf. A000045, A099919, A014437.
%K nonn,easy
%O 1,2
%A _Vladimir Joseph Stephan Orlovsky_, Nov 28 2010