This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174469 Number of permutations p of {1,...,n} satisfying p(1)=1 and, if n>1, |p(i)-p((i mod n)+1)| is in {2,3} for i from 1 to n. 2
 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 4, 6, 8, 10, 12, 16, 22, 30, 40, 52, 68, 90, 120, 160, 212, 280, 370, 490, 650, 862, 1142, 1512, 2002, 2652, 3514, 4656, 6168, 8170, 10822, 14336, 18992, 25160, 33330, 44152, 58488, 77480, 102640, 135970 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Also the number of directed Hamiltonian cycles in the graph on n vertices {1,...,n}, with i adjacent to j iff 2 <= |i-j| <= 3. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Hamiltonian Cycle FORMULA G.f.: (3*x^5-2*x^4+x-1)*x / (x^5+x-1). a(n) = 2*A017899(n-5) for n>=5. EXAMPLE For n = 10 the a(10) = 2 permutations are (1,3,6,9,7,10,8,5,2,4), (1,4,2,5,8,10,7,9,6,3). MAPLE a:= n-> `if`(n<2, n, (Matrix (5, (i, j)-> `if`(j-i=1 or i=5 and j in {1, 5}, 1, 0))^n. <<2, -2, (0\$3)>>)[1, 1]): seq(a(n), n=1..60); CROSSREFS Cf. A017899. Sequence in context: A028961 A110177 A036273 * A297934 A112166 A112167 Adjacent sequences:  A174466 A174467 A174468 * A174470 A174471 A174472 KEYWORD nonn,changed AUTHOR Alois P. Heinz, Nov 28 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 06:19 EDT 2018. Contains 301179 sequences. (Running on oeis4.)