This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174466 a(n) = Sum_{d|n} d*sigma(n/d)*tau(d). 3
 1, 7, 10, 31, 16, 70, 22, 111, 64, 112, 34, 310, 40, 154, 160, 351, 52, 448, 58, 496, 220, 238, 70, 1110, 166, 280, 334, 682, 88, 1120, 94, 1023, 340, 364, 352, 1984, 112, 406, 400, 1776, 124, 1540, 130, 1054, 1024, 490, 142, 3510, 316, 1162, 520, 1240 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Compare to sigma_2(n) = Sum_{d|n} d*sigma(n/d)*phi(d) = sum of squares of divisors of n. tau(n) = A000005(n) = the number of divisors of n, and sigma(n) = A000203(n) = sum of divisors of n. Dirichlet convolution of A038040 and A000203. - R. J. Mathar, Feb 06 2011 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA Logarithmic derivative of A174465. Dirichlet g.f. zeta(s)*(zeta(s-1))^3. - R. J. Mathar, Feb 06 2011 a(n) = Sum_{d|n} tau_3(d)*d = Sum_{d|n} A007425(d)*d. -  Enrique Pérez Herrero, Jan 17 2013 G.f.: Sum_{k>=1} k*tau_3(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 06 2018 Sum_{k=1..n} a(k) ~ Pi^2*n^2/24 * (log(n)^2 + ((6*g - 1) + 12*z1/Pi^2) * log(n) + (1 - 6*g + 12*g^2 - 12*sg1)/2 + 6*((6*g - 1)*z1 + z2)/Pi^2), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Feb 02 2019 PROG (PARI) {a(n)=sumdiv(n, d, d*sigma(n/d)*sigma(d, 0))} (Haskell) a174466 n = sum \$ zipWith3 (((*) .) . (*))                   divs (map a000203 \$ reverse divs) (map a000005 divs)                   where divs = a027750_row n -- Reinhard Zumkeller, Jan 21 2014 CROSSREFS Cf. A000005 (tau), A000203 (sigma), A007425 (tau_3), A034718, A038040, A174465. Sequence in context: A240795 A058532 A280966 * A070422 A102574 A317797 Adjacent sequences:  A174463 A174464 A174465 * A174467 A174468 A174469 KEYWORD nonn,mult AUTHOR Paul D. Hanna, Apr 04 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 20:02 EDT 2019. Contains 326109 sequences. (Running on oeis4.)