login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174466 a(n) = Sum_{d|n} d*sigma(n/d)*tau(d). 3
1, 7, 10, 31, 16, 70, 22, 111, 64, 112, 34, 310, 40, 154, 160, 351, 52, 448, 58, 496, 220, 238, 70, 1110, 166, 280, 334, 682, 88, 1120, 94, 1023, 340, 364, 352, 1984, 112, 406, 400, 1776, 124, 1540, 130, 1054, 1024, 490, 142, 3510, 316, 1162, 520, 1240 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Compare to sigma_2(n) = Sum_{d|n} d*sigma(n/d)*phi(d) = sum of squares of divisors of n.

tau(n) = A000005(n) = the number of divisors of n,

and sigma(n) = A000203(n) = sum of divisors of n.

Dirichlet convolution of A038040 and A000203. - R. J. Mathar, Feb 06 2011

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

FORMULA

Logarithmic derivative of A174465.

Dirichlet g.f. zeta(s)*(zeta(s-1))^3. - R. J. Mathar, Feb 06 2011

a(n) = Sum_{d|n} tau_3(d)*d = Sum_{d|n} A007425(d)*d. -  Enrique Pérez Herrero, Jan 17 2013

G.f.: Sum_{k>=1} k*tau_3(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 06 2018

Sum_{k=1..n} a(k) ~ Pi^2*n^2/24 * (log(n)^2 + ((6*g - 1) + 12*z1/Pi^2) * log(n) + (1 - 6*g + 12*g^2 - 12*sg1)/2 + 6*((6*g - 1)*z1 + z2)/Pi^2), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Feb 02 2019

PROG

(PARI) {a(n)=sumdiv(n, d, d*sigma(n/d)*sigma(d, 0))}

(Haskell)

a174466 n = sum $ zipWith3 (((*) .) . (*))

                  divs (map a000203 $ reverse divs) (map a000005 divs)

                  where divs = a027750_row n

-- Reinhard Zumkeller, Jan 21 2014

CROSSREFS

Cf. A000005 (tau), A000203 (sigma), A007425 (tau_3), A034718, A038040, A174465.

Sequence in context: A240795 A058532 A280966 * A070422 A102574 A317797

Adjacent sequences:  A174463 A174464 A174465 * A174467 A174468 A174469

KEYWORD

nonn,mult

AUTHOR

Paul D. Hanna, Apr 04 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 20:02 EDT 2019. Contains 326109 sequences. (Running on oeis4.)