OFFSET
0,3
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: Product_{i>=1, j>=1, k>=1} 1/(1 - x^(i*j*k)). - Vaclav Kotesovec, Jan 04 2017
G.f.: Product_{k>=1} 1/(1 - x^k)^tau_3(k), where tau_3() = A007425. - Ilya Gutkovskiy, May 22 2018
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/(1-x^(i*j*k)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 04 2017 *)
nmax = 50; A007425 = Table[Sum[DivisorSigma[0, d], {d, Divisors[n]}], {n, 1, nmax}]; s = 1 - x; Do[s *= Sum[Binomial[A007425[[k]], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2018 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sumdiv(m, d, d*sigma(m/d)*sigma(d, 0)))+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 04 2010
STATUS
approved