

A174448


A symmetrical triangle sequence:q=12;f(n,q)=1+Tanh((n1)/q;t(n,m,q)=If[n == 0 or n == 1, 1, Ceiling[Binomial[n, m]/f[n, q]]]


0



1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 4, 8, 8, 4, 1, 1, 5, 11, 15, 11, 5, 1, 1, 5, 15, 24, 24, 15, 5, 1, 1, 6, 19, 37, 46, 37, 19, 6, 1, 1, 6, 23, 54, 80, 80, 54, 23, 6, 1, 1, 7, 28, 74, 129, 155, 129, 74, 28, 7, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Row sums are:
{1, 2, 4, 8, 15, 26, 49, 90, 172, 328, 633,...}.
Sequence is defined as attenuated or frictional combination that get weaker as n increases much like natural processes.


LINKS

Table of n, a(n) for n=0..65.


FORMULA

q=12;
f(n,q)=1+Tanh((n1)/q;
t(n,m,q)=If[n == 0 or n == 1, 1, Ceiling[Binomial[n, m]/f[n, q]]]


EXAMPLE

{1},
{1, 1},
{1, 2, 1},
{1, 3, 3, 1},
{1, 4, 5, 4, 1},
{1, 4, 8, 8, 4, 1},
{1, 5, 11, 15, 11, 5, 1},
{1, 5, 15, 24, 24, 15, 5, 1},
{1, 6, 19, 37, 46, 37, 19, 6, 1},
{1, 6, 23, 54, 80, 80, 54, 23, 6, 1},
{1, 7, 28, 74, 129, 155, 129, 74, 28, 7, 1}


MATHEMATICA

f[0, q_] := 1; f[1, q_] := 1;
f[n_, q_] = 1 + Tanh[(n  1)/q];
t[n_, m_, q_] = If[n == 0  n == 1, 1, Ceiling[Binomial[n, m]/f[n, q]]]


CROSSREFS

Sequence in context: A330885 A255741 A132892 * A077028 A114225 A193515
Adjacent sequences: A174445 A174446 A174447 * A174449 A174450 A174451


KEYWORD

nonn,tabl,uned


AUTHOR

Roger L. Bagula, Mar 20 2010


STATUS

approved



