%I
%S 3,9,16,27,39,53,68,87,108,130,153,177,204,232,262,293,326,361,399,
%T 438,480,523,567,613,660,708,759,813,868,924,981,1040,1100,1162,1225,
%U 1291,1358,1427,1497,1568,1643,1719,1796,1874,1953,2036,2120,2206,2293,2381
%N Partial sums of A022544.
%C Partial sums of numbers that are not the sum of 2 squares. The subsequence of primes in this partial sum begins: 3, 53, 293, 523, 613, 1291, 1427, 2293, 2381, 2657, 3041, 4013, 5779, 6337, 7687, 9337, 9511, 10039. The subsequence of squares in this partial sum begins: 9, 16, 361, 1225.
%F a(n) = SUM[i=1..n] A022544(i) = SUM[i=1..n] {numbers that are not the sum of 2 squares} = SUM[i=1..n] {numbers having some prime factor p == 3 (mod 4) to an odd power}.
%e a(22) = 3 + 6 + 7 + 11 + 12 + 14 + 15 + 19 + 21 + 22 + 23 + 24 + 27 + 28 + 30 + 31 + 33 + 35 + 38 + 39 + 42 + 43 = 523 is prime.
%Y Cf. A001481, A022544.
%K nonn
%O 1,1
%A _Jonathan Vos Post_, Mar 20 2010
