login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174427 a(n) = floor(d(n)/18^(n-1)) where d(n) = 0, 1, -8, 352, -5120,.. and d(n) = -8*d(n-1) +288*d(n-2). 3
0, 1, -1, 1, -1, 1, -2, 1, -3, 2, -3, 3, -5, 5, -6, 7, -9, 10, -12, 14, -17, 20, -25, 28, -35, 40, -49, 57, -69, 81, -98, 116, -139, 164, -196, 233, -278, 330, -395, 469, -559, 665, -793, 943, -1125, 1338, -1595, 1898, -2261, 2692, -3206 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

The low limiting ratio is: -1.190866431897927

LINKS

Table of n, a(n) for n=0..50.

FORMULA

(Binet variant of the definition):

c = 4/(1 + sqrt(19)); b = 4/(1 - sqrt(19)); a(n) = floor[(c^n - b^n)/(c - b)].

MAPLE

A174427aux := proc(n) option remember; if n <= 1 then n ; else -8*procname(n-1)+288*procname(n-2) ; end if; end proc:

A174427 := proc(n) floor(A174427aux(n)/18^(n-1)) ; end proc:

seq(A174427(n), n=0..20) ;

MATHEMATICA

a = 4/(1 + Sqrt[19]); b = 4/(1 - Sqrt[19]);

f[n_] = (a^n - b^n)/(a - b)

Table[Floor[f[n]], {n, 0, 50}]

Module[{c=Sqrt[19], a, b}, a=4/(1+c); b=4/(1-c); Floor[(a^#-b^#)/(a-b)]&/@ Range[0, 50]] (* Harvey P. Dale, Sep 16 2012 *)

CROSSREFS

Sequence in context: A053262 A007359 A213424 * A158206 A164988 A322391

Adjacent sequences:  A174424 A174425 A174426 * A174428 A174429 A174430

KEYWORD

sign

AUTHOR

Roger L. Bagula, Nov 28 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 04:58 EDT 2020. Contains 337267 sequences. (Running on oeis4.)