login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174421 Determinants of the (floor(n/2) - 1) X (floor(n/2) - 1) matrix whose (i,j)-th entry is the intersection number on M_{0,n} of the F-curve F_{1,1,i,n-i-2} and the divisor of the conformal blocks bundle associated to the Lie Algebra sl_n, the level 1 and the n-tuple of weights omega_j^n. 0
2, 1, -6, -2, -16, -9, 60, 25, 576, 133, -2016, -1440, -20480, -7008, 244944, 65745, 2304000, 1100736, -20460000, -8997802, -637009920, -142221875, 4635933120, 3099895353, 108206751744, 36079256640, -3045703680000, -709133348000 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,1

COMMENTS

It is strongly believed that this sequence is never zero. If this were to hold true, these conformal blocks divisors would form a basis of Pic(M_{0,n})^{S_n}.

REFERENCES

A. Beauville, Conformal blocks, fusion rules and the Verlinde formula, Bar-Ilan University, Ramat Gan, Israël, 1996, pages 75-99.

K. Ueno, Conformal field theory with gauge symmetry, American Mathematical Society, 2008

LINKS

Table of n, a(n) for n=4..31.

A. Beauville, Conformal blocks, fusion rules and the Verlinde formula, arXiv:alg-geom/9405001, 1994.

N. Fakhruddin, Chern classes of conformal blocks on M_{0,n}, arxiv:0904.2918 [math.AG], 2009-2011.

EXAMPLE

For n=6 the intersection matrix is [[0,3],[2,0]] giving a determinant of -6. In general these matrices have a high degree of symmetry and periodicity.

MATHEMATICA

slncbIntersection[n_, i_, j_] := Module[{k = n-Mod[i j, n]}, If[Floor[i j/ n] + Floor[j (n-i-2)/n] == j-2, If[1 <= k <= j, Return[k], If[j <= k <= 2j-1, Return[2j-k]], Return[0]]]; 0];

slnIntersectionMatrix[n_] := Module[{matdict}, Do[r = slncbIntersection[n, i, j]; matdict[i-1, j-2] = r, {i, 1, n/2-1}, {j, 2, n/2}]; Return[ Table[ matdict[i, j], {i, 0, n/2-2}, {j, 0, n/2-2}]]];

Table[Det[slnIntersectionMatrix[n]], {n, 4, 31}] (* Jean-François Alcover, Aug 10 2018, translated from Sage *)

PROG

(Other) Macaulay 2 with package ConfBlocks slnl1intmat = (n) -> ( if even(n) then g=lift(n/2-1, ZZ) else g=lift((n-1)/2-1, ZZ); cu:=sn1curves(n); M = apply(#cu, i -> apply(g, j -> (1/1)*CdotCBslml1(cu_i, n, 1, apply(n, k -> j+2)))); matrix M )

(Sage)

# Based on a formula in "Conformal Blocks Divisors on M_{0, n}"

# with Maxim Arap, Angela Gibney and David Swinarski.

def sln_cb_intersection(n, i, j):

    """Gives the intersection on M_{0, n} of the sl_n level 1, omega_j^n conformal blocks divisor with the F-curve F_{1, 1, i, n-i - 2}"""

    k = n - (i*j % n)

    if (i*j/n).floor() + (j*(n-i-2)/n).floor() == j-2:

        if k in [1..j]:

            return k

        elif k in [j..2*j-1]:

            return 2*j - k

    else:

        return 0

def sln_intersection_matrix(n):

    """gives the g X g intersection matrix of sln level 1 omega_j^n conformal blocks divisors with 1, 1, i F-curves"""

    matdict = dict()

    for j in [2..(n/2).floor()]:

        for i in [1..(n/2).floor()-1]:

            r = sln_cb_intersection(n, i, j)

            if r != 0:

                matdict[(i-1, j-2)] = r

    return matrix(matdict)

[sln_intersection_matrix(n).determinant() for n in [4..104]]

CROSSREFS

Sequence in context: A239148 A057560 A085592 * A089849 A185330 A217955

Adjacent sequences:  A174418 A174419 A174420 * A174422 A174423 A174424

KEYWORD

sign

AUTHOR

Jim Stankewicz (stankewicz(AT)gmail.com), Mar 19 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 14:18 EST 2021. Contains 341632 sequences. (Running on oeis4.)