This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174387 A symmetrical product triangle sequence:q=2;c(n,q)=Product[1 - q^i, {i, 1, n}]; t(n,m,q)=If[Floor[n/2] greater than or equal to m, c(n, q)/c(n - m, q), c(n, q)/c(m, q)] 1
 1, 1, 1, 1, -3, 1, 1, -7, -7, 1, 1, -15, 105, -15, 1, 1, -31, 465, 465, -31, 1, 1, -63, 1953, -29295, 1953, -63, 1, 1, -127, 8001, -248031, -248031, 8001, -127, 1, 1, -255, 32385, -2040255, 63247905, -2040255, 32385, -255, 1, 1, -511, 130305, -16548735 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, -1, -12, 77, 870, -25513, -480312, 59231657, 2052302730, -1032956270773,...}. LINKS FORMULA q=2; c(n,q)=Product[1 - q^i, {i, 1, n}]; t(n,m,q)=If[Floor[n/2] greater than or equal to m, c(n, q)/c(n - m, q), c(n, q)/c(m, q)] EXAMPLE {1}, {1, 1}, {1, -3, 1}, {1, -7, -7, 1}, {1, -15, 105, -15, 1}, {1, -31, 465, 465, -31, 1}, {1, -63, 1953, -29295, 1953, -63, 1}, {1, -127, 8001, -248031, -248031, 8001, -127, 1}, {1, -255, 32385, -2040255, 63247905, -2040255, 32385, -255, 1}, {1, -511, 130305, -16548735, 1042570305, 1042570305, -16548735, 130305, -511, 1}, {1, -1023, 522753, -133302015, 16929355905, -1066549422015, 16929355905, -133302015, 522753, -1023, 1} MATHEMATICA c[n_, q_] = Product[1 - q^i, {i, 1, n}]; t[n_, m_, q_] = If[Floor[n/2] >= m, c[n, q]/c[n - m, q], c[n, q]/c[m, q]]; Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 10}] CROSSREFS Sequence in context: A058669 A057004 A059328 * A176791 A259471 A220555 Adjacent sequences:  A174384 A174385 A174386 * A174388 A174389 A174390 KEYWORD sign,tabl,uned AUTHOR Roger L. Bagula, Mar 18 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 19:00 EDT 2019. Contains 325144 sequences. (Running on oeis4.)