login
A174345
Triangle T(n, k) = (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(k-1) if floor(n/2) >= k, otherwise (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(n-k), read by rows.
1
1, 1, 1, 1, 6, 1, 1, 12, 12, 1, 1, 20, 80, 20, 1, 1, 30, 200, 200, 30, 1, 1, 42, 420, 1400, 420, 42, 1, 1, 56, 784, 3920, 3920, 784, 56, 1, 1, 72, 1344, 9408, 28224, 9408, 1344, 72, 1, 1, 90, 2160, 20160, 84672, 84672, 20160, 2160, 90, 1
OFFSET
1,5
FORMULA
T(n, k) = (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(k-1) if floor(n/2) >= k, otherwise (1/k)*binomial(n-1, k-1)*binomial(n, k-1)*2^(n-k).
T(n, n-k) = T(n, k).
From G. C. Greubel, Nov 28 2021: (Start)
T(n, n-1) = A180291(n), n > 1.
T(n, n-1) = 2*A000217(n-1), n > 2. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 12, 12, 1;
1, 20, 80, 20, 1;
1, 30, 200, 200, 30, 1;
1, 42, 420, 1400, 420, 42, 1;
1, 56, 784, 3920, 3920, 784, 56, 1;
1, 72, 1344, 9408, 28224, 9408, 1344, 72, 1;
1, 90, 2160, 20160, 84672, 84672, 20160, 2160, 90, 1;
MATHEMATICA
Table[(Binomial[n-1, k-1]*Binomial[n, k-1]/k)*If[Floor[n/2]>=k, 2^(k-1), 2^(n-k)], {n, 12}, {k, n}]//Flatten
PROG
(Sage)
def A174345(n, k):
b=binomial
if ((n//2)>k-1): return (1/(n+1))*b(n-1, k-1)*b(n+1, k)*2^(k-1)
else: return (1/(n+1))*b(n-1, k-1)*b(n+1, k)*2^(n-k)
flatten([[A174345(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Nov 28 2021
CROSSREFS
Sequence in context: A202868 A202877 A174124 * A174449 A174150 A202673
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Mar 16 2010
EXTENSIONS
Edited by G. C. Greubel, Nov 28 2021
STATUS
approved