The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174315 a(n) = 3F0( -n,-n+1,-n+2;;-1)= n!*(n-1)!* 1F2(-n+2;2,3;-1)/2, where nFm(;;z) are generalized hypergeometric series. 0
 1, 7, 97, 2221, 75721, 3591211, 225827617, 18168156217, 1819029079441, 221716249326991, 32313176619313921, 5547478498197397477, 1107802527495396486937, 254557467773494382397811 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Special values of hypergeometric functions. LINKS FORMULA The sequence a(n) can be obtained from the following three generating functions of hypergeometric type: g1(t) = sum(a(n)*t^n/(n!*(n-1)!),n=2..infinity) = (t^2/(1-t))* 1F2(1;2,3;t/(1-t))/2 g2(t) = sum(a(n)*t^n/(n!*(n-1)!*(n-2)!), n=2..infinity) = exp(t)*t^2* 0F2(;2,3;t)/2 g3(t) = sum(a(n)*t^n/(n!*(n-1)!*(n-2)), n=3..infinity) = t^2*(t/(6*(1-t))* 2F3(1,1;2,3,4;t/(1-t))-log(1-t))/2 Note the appearance of the factor (n-2) and not (n-2)! in the denominator of g3. CROSSREFS Sequence in context: A013521 A003710 A027837 * A046908 A005014 A201063 Adjacent sequences:  A174312 A174313 A174314 * A174316 A174317 A174318 KEYWORD nonn AUTHOR Karol A. Penson and Katarzyna Gorska (gorska(AT)lptmc.jussieu.fr), Mar 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 03:02 EDT 2021. Contains 343145 sequences. (Running on oeis4.)