login
Values of the family of polynomials y = (x^(n+1) + 1)/(x + 1) at point x = discriminant of y.
7

%I #13 Mar 03 2023 10:47:28

%S 1,0,13,-4369,242203001,3653339505259535,22540681439108936194378057,

%T -85070916250026219054240312625736187905,

%U 273892687731183836066546120028455556686378073137630689

%N Values of the family of polynomials y = (x^(n+1) + 1)/(x + 1) at point x = discriminant of y.

%C A174309 is a subsequence of this sequence.

%t s = {}; Do[k = PolynomialQuotient[(x^n + 1), (x + 1), x]; d = Discriminant[k, x]; AppendTo[s, k /. x -> d], {n, 1, 10}]; s

%Y Cf. A174304, A174305, A174306, A174307, A174308, A174309, A174311.

%K sign

%O 1,3

%A _Artur Jasinski_, Mar 15 2010