login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174282 a(n) = 3^n mod M(n) where M(n) = A014963(n) is the exponential of the Mangoldt function. 1
0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Appears to be always either 0 or 1.

This follows from Fermat's Little Theorem. - Charles R Greathouse IV, Feb 13 2011

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = A000244(n) mod A014963(n).

a(n) = 1 if n = p^k for k > 0 and p a prime not equal to 3, a(n) = 0 otherwise. - Charles R Greathouse IV, Feb 13 2011

MATHEMATICA

f[n_] := PowerMod[3, n - 1, Exp@ MangoldtLambda@ n]; Array[f, 105] (* Robert G. Wilson v, Jan 22 2015 *)

Table[mod[3^(n-1) , e^(MangoldtLambda[n]) ], {n, 1, 100}] (* G. C. Greubel, Nov 25 2015 *)

PROG

(PARI) vector(95, n, ispower(k=n, , &k); isprime(k)&k!=3) \\ Charles R Greathouse IV, Feb 13 2011

CROSSREFS

Cf. A174275, A062174.

Sequence in context: A165211 A096270 A159689 * A123640 A022924 A157412

Adjacent sequences:  A174279 A174280 A174281 * A174283 A174284 A174285

KEYWORD

nonn,easy

AUTHOR

Mats Granvik, Mar 15 2010

EXTENSIONS

More terms from Robert G. Wilson v, Jan 22 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 23 15:54 EDT 2017. Contains 292361 sequences.