OFFSET
0,2
COMMENTS
The multiplicative property of the tau-function implies that the Fibonacci(k) has a prime factor representation p_1^e_1*p_2^e_2*... where (e_1+1)*(e_2+1)*... is a power of 2, that is, the exponents are in {1,3,7,15,...}. This adds for example the squarefree Fibonacci numbers with indices from A037918 to the list of candidates. - R. J. Mathar, Oct 11 2011
REFERENCES
Majorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974.
EXAMPLE
a(0) = 1 because tau(Fibonacci(1)) = tau(1) = 2^0 = 1.
a(1) = 3 because tau(Fibonacci(3)) = tau(2) = 2^1 = 2.
a(2) = 6 because tau(Fibonacci(6)) = tau(8) = 2^2 = 4.
a(3) = 15 because tau(Fibonacci(15)) = tau(610) = 2^3 = 8.
MAPLE
with(numtheory):for p from 1 to 100 do:indic:=0:u0:=0:u1:=1:for n from 2 to 1000 while(indic=0)do:s:=u0+u1:u0:=u1:u1:=s:if tau(s)= 2^p and indic=0 then print(p): print(n): indic:=1:else fi:od:od:
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Michel Lagneau, Mar 15 2010
EXTENSIONS
a(27)-a(32) from Amiram Eldar, Oct 14 2019
STATUS
approved