login
A174259
Primes p such that (p^2+3*p-3) and (p^3+3*p^2-3) are also prime.
1
2, 5, 7, 41, 131, 311, 857, 1321, 1427, 1627, 1667, 1697, 1901, 2237, 2311, 2341, 2357, 2957, 3167, 3331, 3767, 3881, 4567, 4637, 5237, 5881, 5927, 7477, 9187, 11197, 11701, 12037, 12421, 12491, 13367, 13627, 14081, 14447, 16111, 16477, 18047
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime[Range[5000]], PrimeQ[#^2 + 3 # - 3] && PrimeQ[#^3 + 3 #^2 - 3]&] (* Vincenzo Librandi, Apr 10 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(20000) |IsPrime(p^2+3*p-3)and IsPrime(p^3+3*p^2-3)];
CROSSREFS
Sequence in context: A042559 A197222 A062645 * A215213 A069356 A041653
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 14 2010
STATUS
approved