login
A174171
A generalized Chebyshev transform of the Motzkin numbers A001006.
1
1, 1, 4, 8, 25, 65, 197, 571, 1753, 5351, 16746, 52626, 167547, 536559, 1732272, 5622960, 18357211, 60205319, 198323708, 655787680, 2176141555, 7244106347, 24185285341, 80960692691, 271685400443, 913784117809, 3079889039230
OFFSET
0,3
COMMENTS
Hankel transform is the (1,8) Somos-4 sequence A097495(n+2).
FORMULA
G.f.: (1-x-2*x^2-sqrt(1-2*x-7*x^2+4*x^3+4*x^4))/(2*x^2) = (1/(1-2*x))*M(x/(1-2*x^2)), M(x) the g.f. of A010006.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k) * 2^k * A001006(n-2k).
Conjecture: (n+2)*a(n) -(2*n+1)*a(n-1) +7*(1-n)*a(n-2) +2*(2*n-5)*a(n-3) +4*(n-4)*a(n-4)=0. - R. J. Mathar, Sep 30 2012
a(0) = a(1) = 1; a(n) = a(n-1) + 2 * a(n-2) + Sum_{k=0..n-2} a(k) * a(n-k-2). - Ilya Gutkovskiy, Nov 09 2021
a(n) ~ 17^(1/4) * (3 + sqrt(17))^(n+1) / (sqrt(Pi) * n^(3/2) * 2^(n+2)). - Vaclav Kotesovec, Nov 11 2021
MATHEMATICA
Table[Sum[Binomial[n - k, k] 2^k * Hypergeometric2F1[(1 - #)/2, -#/2, 2, 4] &[n - 2 k], {k, 0, Floor[n/2]}], {n, 0, 26}] (* Michael De Vlieger, Feb 02 2017, after Peter Luschny at A001006 *)
CROSSREFS
Cf. A001006.
Sequence in context: A328038 A107840 A046736 * A262042 A227644 A074188
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 10 2010
STATUS
approved