login
A174169
A generalized Chebyshev transform of the Motzkin numbers A001006.
1
1, 1, -1, -2, 0, 0, -3, 1, 8, 1, 1, 26, 7, -51, -3, 0, -264, -186, 348, -120, -285, 2697, 2871, -2304, 3393, 8029, -25795, -36872, 16108, -60010, -159683, 213795, 413712, -181857, 833779, 2669534, -1272977, -4030235, 3611168, -9145271, -39467427
OFFSET
0,4
COMMENTS
Hankel transform is the (1,3) Somos-4 sequence A174170.
FORMULA
G.f.: (1-x+3x^2-sqrt(1-2x+3x^2-6x^3+9x^4))/(2x^2)=(1/(1+3x))*M(x/(1+3x^2)), M(x) the g.f. of A010006;
a(n) = sum{k=0..floor(n/2), (-3)^k*A001006(n-2k)}.
Conjecture: (n+2)*a(n) -(2*n+1)*a(n-1) +3*(n-1)*a(n-2) +3*(5-2*n)*a(n-3) +9*(n-4)*a(n-4)=0. - R. J. Mathar, Sep 30 2012
CROSSREFS
Sequence in context: A077888 A319668 A167634 * A248174 A125095 A113411
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 10 2010
STATUS
approved