OFFSET
1,1
COMMENTS
Numbers whose partition into parts of sizes 1, 5, 10, and 25 having a minimal number of parts includes a part of size 5.
For each number the partition is unique and exactly one part is of size 5.
Complement of A174139.
Amounts in cents requiring a nickel when the minimal number of coins is selected from pennies, nickels, dimes, and quarters (whether usage of bills for whole-dollar amounts is permitted or not).
For each n >= 0, floor(n/25) parts of size 25 (quarters) occur in the partition with minimal number of these parts (regardless of whether partition includes part of size 5).
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1).
FORMULA
a(10+n) = a(n) + 25 for n >= 1.
a(n) = a(n-1) + a(n-10) - a(n-11). G.f.: x*(5+x+x^2+x^3+x^4+6*x^5+x^6+x^7+x^8+x^9+6*x^10) / ( (1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = n+9+5*floor((floor((n-1)/5)-1)/2)+10*floor(floor((n-1)/5)/2). - Wesley Ivan Hurt, Mar 22 2015
EXAMPLE
As 15 = 10 + 5, 15 is a term since 5 is included and all other candidate partitions have more than two parts. Similarly, as 30 = 25 + 5, 30 is a term. However, 45 = 25 + 10 + 10 is not a term as it contains no part of size 5.
MATHEMATICA
Table[n + 9 + 5 Floor[(Floor[(n - 1)/5] - 1)/2] + 10 Floor[Floor[(n - 1)/5]/2], {n, 100}] (* Wesley Ivan Hurt, Mar 22 2015 *)
PROG
(Magma) [n : n in [1..200] | n mod 25 in [5, 6, 7, 8, 9, 15, 16, 17, 18, 19]]; // Vincenzo Librandi, Mar 22 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Rick L. Shepherd, Mar 09 2010
STATUS
approved