OFFSET
2,2
COMMENTS
LINKS
Alois P. Heinz, Rows n = 2..200, flattened
FORMULA
G.f.: 1/Product((1-x*y^i)^A000081(i), i=2..infinity).
EXAMPLE
Triangle begins:
1,
2,
4, 1,
9, 2,
20, 7, 1,
48, 17, 2,
115, 48, 7, 1,
286, 124, 21, 2,
719, 336, 60, 7, 1,
1842, 888, 171, 21, 2,
4766, 2393, 488, 65, 7, 1,
12486, 6419, 1372, 187, 21, 2,
32973, 17376, 3862, 554, 65, 7, 1,
87811, 47097, 10846, 1600, 193, 21, 2,
235381, 128365, 30429, 4644, 574, 65, 7, 1,
634847, 350837, 85365, 13362, 1685, 193, 21, 2,
1721159, 962731, 239566, 38459, 4948, 581, 65, 7, 1,
...
MAPLE
with(numtheory):
t:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1))
end:
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(p<1 or i<2, 0, add(b(n-i*j, i-1, p-j) *
binomial(t(i)+j-1, j), j=0..min(n/i, p) ))))
end:
T:= (n, k)-> b(n, n, k):
seq(seq(T(n, k), k=1..iquo(n, 2)), n=2..18); # Alois P. Heinz, May 17 2013
MATHEMATICA
t[n_] := t[n] = Module[{d, j}, If[n <= 1, n, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]]; b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[p < 1 || i < 2, 0, Sum[b[n-i*j, i-1, p-j]* Binomial[t[i]+j-1, j], {j, 0, Min[n/i, p]}]]]]; T[n_, k_] := b[n, n, k]; Table[Table[T[n, k], {k, 1, Quotient[n, 2]}], {n, 2, 18}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Nov 26 2010
STATUS
approved