OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..100 of the triangle, flattened
FORMULA
T(n, k) = binomial(n-k+1, k) + binomial(k+1, n-k) with T(0,0) = T(1, 0) = T(1, 1) = 1.
From G. C. Greubel, Feb 10 2021: (Start)
T(n, k) = T(n, n-k).
Sum_{k=0..n} T(n, k) = 2*Fibonacci(n+2) - [n=0] - 2*[n=1] = 2*A071679(n) + [n=0], where [] is the Iverson bracket. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 4, 4, 1;
1, 4, 6, 4, 1;
1, 5, 7, 7, 5, 1;
1, 6, 10, 8, 10, 6, 1;
1, 7, 15, 11, 11, 15, 7, 1;
1, 8, 21, 20, 10, 20, 21, 8, 1;
1, 9, 28, 35, 16, 16, 35, 28, 9, 1;
1, 10, 36, 56, 35, 12, 35, 56, 36, 10, 1;
MATHEMATICA
T[n_, k_]:= If[n==0 || n==1, 1, Binomial[n-k+1, k] + Binomial[k+1, n-k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
PROG
(Sage)
def T(n, k):
if (n==0 or n==1): return 1
else: return binomial(n-k+1, k) + binomial(k+1, n-k)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 10 2021
(Magma)
T:= func< n, k | n lt 2 select 1 else Binomial(n-k+1, k) + Binomial(k+1, n-k) >;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 10 2021
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Mar 07 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 10 2021
STATUS
approved